

ASP.NET Web API

Build RESTful web applications and services
on the .NET framework

Master ASP.NET Web API using .NET Framework 4.5
and Visual Studio 2013

Joydip Kanjilal

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

ASP.NET Web API
Build RESTful web applications and services on the .NET framework

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1121213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-974-8

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Joydip Kanjilal

Reviewers
Santhosh Aravalli

Chandana N. Athauda

Anand Narayanaswamy

Pavel Volgarev

Acquisition Editor
Kartikey Pandey

Pramila Balan

Nikhil Chinnari

Lead Technical Editor
Anila Vincent

Technical Editors
Mrunmayee Patil

Faisal Siddiqui

Sonali S. Vernekar

Project Coordinator
Kranti Berde

Copy Editor
Roshni Banerjee

Sarang Chari

Mradula Hegde

Dipti Kapadia

Kirti Pai

Lavina Pereira

Proofreader
Clyde Jenkins

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Joydip Kanjilal is a Microsoft Most Valuable Professional in ASP.NET, a speaker,
and the author of several books and articles. He has over 16 years of experience
in the IT industry, with more than 10 years using Microsoft .NET and its related
technologies. He was selected as the MSDN Featured Developer of the Fortnight
a number of times and also as the Community Credit Winner by www.community-
credit.com several times. He has authored the following books:

•	 Visual Studio Six in One (Wrox Publishers)
•	 ASP.NET 4.0 Programming (Mc-Graw Hill Publishing)
•	 Entity Framework Tutorial (Packt Publishing)
•	 Pro Sync Framework (APRESS)
•	 Sams Teach Yourself ASP.NET Ajax in 24 Hours (Sams Publishing)
•	 ASP.NET Data Presentation Controls Essentials (Packt Publishing)

He has also authored more than 250 articles for some of the most reputable sites,
such as www.msdn.microsoft.com, www.code-magazine.com, www.asptoday.com,
www.devx.com, www.ddj.com, www.aspalliance.com, www.aspnetpro.com, www.
sql-server-performance.com, and www.sswug.com. A lot of these articles have
been selected at www.asp.net—Microsoft's	official	website	on	ASP.NET.

He has years of experience in designing and architecting solutions for various
domains. His technical strengths include C, C++, VC++, Java, C#, Microsoft .NET,
Ajax, WCF, REST, SOA, Design Patterns, SQL Server, Operating Systems, and
Computer Architecture.

For more details, please refer to the following links:

•	 Blog: http://aspadvice.com/blogs/joydip
•	 Website: www.joydipkanjilal.com
•	 Twitter: https://twitter.com/joydipkanjilal
•	 Facebook: https://www.facebook.com/joydipkanjilal
•	 LinkedIn: http://in.linkedin.com/in/joydipkanjilal

I am thankful to the entire team at Packt Publishing for providing
me the opportunity to author this book. I am also thankful to my
wife, Sabita Kanjilal, for her encouragement throughout this project,
as well as Shaik Tajuddin, Prithwish Ganguli, and my other family
members for their continued support.

About the Reviewers

Santhosh Aravalli has over 10 years of programming experience in working
with Microsoft technologies. In his professional career, he has developed solutions
ranging from enterprise web applications to SOA applications, primarily using the
Microsoft.NET platform. He has worked across many industry domains, including
financial,	mortgage,	retail,	and	logistics	companies	in	Chicago	and	the	Los	Angeles	
metro	area.	He	has	numerous	industry	certifications,	including	MCAD,	MCTS,	and	
MCPD and is on his way to get his MCSD shortly. He graduated from the Kakatiya
University in India with a degree in Computer Science & Engineering.

In his spare time, he practices meditation, collects aphorisms, visits the library,
watches TED Talks, and works on his pet projects.

Visit his blog at http://visualstudio99.blogspot.com or contact him at
saravalli9@gmail.com.

Chandana N. Athauda is currently employed at Brunei Accenture Group (BAG)
Networks, Brunei. He serves as a Technical Consultant and focuses on adopting
new technologies toward solid solutions. He has been working professionally in
the IT industry for more than 12 years (he's also an ex-Microsoft Most Valuable
Professional (MVP) and Microsoft Ranger for TFS). His roles in the IT industry have
spanned the entire spectrum from programming to technical consulting. Technology
has always been a passion for him. In his spare time, Chandana enjoys watching
association football.

If you would like to talk to Chandana about this book, feel free to write to him at
info@inzeek.net or tweet him at @inzeek.

I dedicate this book to my son, Binuk, and also in memory of my
father, Samson.

Anand Narayanaswamy, an ASPInsider, works as a freelance writer based
in Trivandrum, Kerala, India. He was a Microsoft Most Valuable Professional
(MVP) from 2002 to 2011 and has worked as the Chief Technical Editor for www.
ASPAlliance.com	for	a	period	of	five	years.

Anand has worked as a technical editor for several popular publishers, such as Sams,
Addison-Wesley Professional, Wrox, Deitel, Packt Publishing, and Manning. His
technical editing skills have helped the authors of Sams Teach Yourself the C# Language
in 21 Days, Core C# and .NET, Professional ADO.NET 2, ASP.NET 2.0 Web Parts in
Action, and Internet and World Wide Web (Fourth Edition)	to	fine-tune	the	content.

He has also contributed articles for Microsoft's Knowledge Base, www.c-
sharpcorner.com, www.developer.com, and wwwcodeguru.com, and has delivered
podcast shows.

Anand runs his own blog at Learnxpress (www.learnxpress.com) and provides web
hosting (www.netans.com) and blog installation services.

Pavel Volgarev is a software engineer with several years of experience in
working with Microsoft technologies and developing for the Web. The majority of
his time includes working with languages and technologies such as C#, ASP.NET
MVC, RESTful Web Services, as well as HTML5-related APIs and Rich Internet
Applications (RIA). He is also very keen about web design, UX, interaction design,
and typography.

Prior to joining Infusion, Pavel was working as a System Architect, evolving and
improving	one	of	the	finest	CMS	and	e-commerce	systems	in	Denmark	and	Europe.

Apart from being a developer, Pavel is also very passionate about blogging, public
speaking,	as	well	as	startups	and	entrepreneurship.	Pavel's	complete	profile	is	
available at http://volgarev.me.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com	for	support	files	and	downloads	related	to	
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital	book	
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get	notified!	Find	out	when	new	books	are	published	by	following	@PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Understanding Representational State Transfer Services 5

Understanding REST 6
Resources in REST-based architecture 7
The REST architectural constraints 9

Client-server 9
Stateless 9
Cacheable 9
Code on demand 9
Uniform interface 10
Resource management 10

SOAP, REST, and XML-RPC – a closer look 10
Understanding Windows Communication Foundation 14
REST attributes 16

WebServiceHost 16
WebHttpBinding 17
WebHttpBehavior 17
WebOperationContext 18
WebMessageFormat 19
WebGet 19
WebInvoke 20
UriTemplate 20

REST-based web services 21
Learning RESTful web services 21

Implementing RESTful services in .NET 4.5 22
The UserNamePasswordValidator class 23
Simplified configuration 24
Standard endpoints 27
Discovery 27
Simplified IIS hosting 29
Improvements in REST 30

Table of Contents

[ii]

Implementing a RESTful service using WCF 4.5 32
Creating a WCF service 32
Making the service RESTful 36

Specifying the binding information 37
Hosting the RESTful WCF service 38

Hosting the service inside the console application 39
Returning JSON data 39
Consuming the RESTful service 41

Summary 41
Chapter 2: Understanding Resource and Service Oriented
Architectures 43

Understanding SOA 44
Service 45
Service provider 45
Service consumer 45
Service registry 46
Service contract 46
Service proxy 46
Service lease 46
Message 47
Service description 47
Advertising and discovery 47
From object orientation to SOA to ROA to REST 47

A look at ROA 49
Basic properties of ROAs 51

Basic concepts of ROAs 51
Fundamental HTTP concepts 52

Resource Oriented and Service Oriented Architecture 54
Resource 54
Uniform resource identifier 55
Addressability 55
Statelessness 55
Representations 56

Comparison of the three architectural styles 56
Summary 58

Chapter 3: Working with RESTful Services 59
Exploring Windows Communication Foundation (WCF) 59
Applying service behavior 62
New features in WCF 4.5 62

Enhancements in the WCF framework 63
Simplified configuration 65

Table of Contents

[iii]

Standard endpoints 67
Discovery 68
Simplified IIS hosting 70
REST improvements 71
Routing service 72
The automatic Help page 76

Bindings in WCF 76
Choosing the correct binding 84
Security in WCF – securing your WCF services 84

Implementing RESTful services using WCF 86
Creating the security database 87
Creating SecurityService 90

Making the service RESTful 92
Hosting SecurityService 94

Summary 95
Chapter 4: Consuming RESTful services 97

Understanding AJAX 97
Introducing JSON and jQuery 99
Understanding Language Integrated Query (LINQ) 100

Data source controls 102
ObjectDataSource 102
SqlDataSource 102
SiteMapDataSource 103
XMLDataSource 103
LinqDataSource 103

LINQ to XML 105
LINQ to SQL 106
LINQ to Objects 107
LINQ to Entities 107

Working with service operations in LINQ 108
Security Service 111
Consuming Security Service 112

ASP.NET 112
Consuming Security Service using ASP.NET 4.5 112

The ASP.NET MVC Framework 114
Consuming Security Service using ASP.NET MVC 115
Asynchronous operations 117

Understanding Windows Presentation Foundation 120
Consuming Security Service using WPF 121

References 122
Summary 122

Table of Contents

[iv]

Chapter 5: Working with ASP.NET 4.5 123
Working with the OData protocol 123

Working with the ASP.NET Web API and OData 124
New features in the .NET Framework 4.x 125

Supporting asynchronous programming in the .NET Framework 4.x 125
Introducing the new features in ASP.NET 4.5 126

Enhanced state management features 126
Performance monitoring 128
Extensible Output Caching 128
Search Engine Optimization (SEO) 129
Other notable enhancements 129

Working with the ASP.NET Web API 130
The ASP.NET Web API architecture 131
Routing in the ASP.NET Web API 132
Implementing the ASP.NET Web API for the Security database 134

Summary 146
Chapter 6: Working with RESTful Data Using Silverlight 147

Introducing Silverlight 5 147
New features in Silverlight 5 148

WCF 4.5 RIA services 151
Implementing a sample application 152

CRUD operations 164
Summary 167

Chapter 7: Advanced Features 169
Best practices in using WCF 169

WCF security issues 170
Bindings 170

WCF security 172
Message-level security 172
Transport-level security 177

Best practices in using WCF services 181
Best practices in using ASP.NET Web API 182
References 183
Summary 184

Appendix: Library References 185
Section A 185

Popular REST-based service frameworks 186
Ruby on Rails 186
Restlet 187
Django REST 187

Table of Contents

[v]

The Flickr REST API 187
The Google API 188
Yahoo! Social REST APIs 188

Section B 188
Working with the Visual Studio 2013 IDE 188

Installing Visual Studio 2013 188
New features in the Visual Studio 2013 IDE 194
HTTP requests and response code 194
Abbreviations 195
The ASP.NET Web API library reference (based on .NET Framework
Version 4.5) 195

References 197
Index 199

Preface
ASP.NET Web API is a light-weight, web-based architecture that you can use to
build web services that use HTTP as the protocol. This book is a clear and concise
guide to the ASP.NET Web API Framework, with plenty code examples. It explores
ways to consume Web API services using ASP.NET 4.5, ASP.NET MVC 4, WPF, and
Silverlight clients.

What this book covers
Chapter 1, Understanding Representational State Transfer Services, provides an
introduction to the concept of REST and its related terminologies.

Chapter 2, Understanding Resource and Service Oriented Architectures, explores Resource
Oriented Architectures and discusses the differences between ROA and SOA.

Chapter 3, Working with Restful Services, discusses the basics of implementing RESTful
services in .NET and the necessary tips and techniques.

Chapter 4, Consuming Restful Services, discusses how RESTful services can be
consumed. It also discusses the guidelines and best practices involved.

Chapter 5, Working with ASP.NET 4.5, discusses how we can work with ASP.NET 4.5
and the Web API.

Chapter 6, Working with Restful Data Using Silverlight, discusses how we can work
with RESTful services with Silverlight client.

Chapter 7, Advanced Features, discusses some advanced concepts in the Web API and
the best practices to be followed when using WCF and ASP.NET Web API.

Appendix, Library References, discusses the popular REST-based Service Frameworks
and APIs, how we can get started using Visual Studio 2013 IDE, and contains a
reference to the Web API class library.

Preface

[2]

What you need for this book
•	 Visual Studio 2013
•	 SQL Server 2008 R2 / SQL Server 2012

Who this book is for
This book is for professionals who would like to build scalable REST-based
services	using	the	.NET	4.5	Framework	by	leveraging	the	features	and	benefits	
of the Web API Framework.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	among	different	
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
Body section of the SOAP request contains the actual XML request object that is sent."

A block of code is set as follows:

<SOAP: Envelope>
 <SOAP: Header>
 </SOAP: Header>
 <SOAP: Body>
 </SOAP: Body>
</SOAP: Envelope>

New terms and important words are shown in bold. Words that you see on the
screen, in menus, or dialog boxes for example, appear in the text like this: "Click
on the Restart Now button to restart your system and complete the installation of
Visual Studio 2013."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[3]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the	files	e-mailed	directly	to	you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your	submission	
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[4]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Understanding
Representational State

Transfer Services
Representational State Transfer (REST) is an architecture style that is used for
creating scalable services. A RESTful Web Service is one that conforms to the REST
architecture constraints. The REST architectural style has quickly become very popular
over the world for designing and architecting applications that can communicate.
Due to its simplicity, it has gained widespread acceptance worldwide in lieu of the
SOAP- and WSDL-based Web Services. It is essentially a client-server architecture
and uses the stateless HTTP protocol. In this book, we will cover REST using the
HTTP	protocol.	Our	journey	towards	mastering	REST	and	Web	API	has	just	begun!

In this chapter, we will cover the following topics:

•	 REST
•	 Resources and URI
•	 REST and RPC
•	 Implementing RESTful services in .NET 4.5
•	 Creating a WCF service
•	 Making the WCF service RESTful
•	 Specifying the binding information
•	 Hosting the service
•	 Returning the JSON data
•	 Consuming the RESTful service

Understanding Representational State Transfer Services

[6]

Understanding REST
What	is	REST?	Why	is	it	becoming	so	popular	over	time?	Is	REST	an	alternative	to	
Web	Services?	How	can	I	make	use	of	the	.NET	Framework	to	implement	RESTful	
services?	We	will	answer	these	questions	as	we	progress	through	the	sections	of	
this chapter.

REST is an architectural style for designing distributed applications that can
intercommunicate. Note that REST is not a technology or a set of standards.
Rather,	it	is	a	set	of	constraints	that	can	be	used	to	define	a	new	style	of	architecture.	
Essentially, it is a client-server architectural style where the connections are stateless.

Note that the REST architecture style can be applied to other
protocols as well. The word "stateless" implies the HTTP/
HTTPS protocols. The REST architectural style is popular
in the HTTP world and gives better results when used in
combination with the HTTP protocol.

REST is not a standard; rather, it is an architectural alternative to RPC and Web
Services. In the REST architectural style, you can communicate among systems using
the HTTP protocol (if HTTP is the protocol in use). Actually, the World Wide Web
(WWW) can be viewed as a REST-based architecture. A RESTful architecture is based
on a cacheable and stateless communication protocol.

REST is an architectural style that divides an application's state and functionality
into resources. These resources are in turn addressable using URIs over HTTP. These
resources have a common interface and are uniquely addressable. A REST-based
model is stateless, client-server-based, and cacheable.

As discussed, in a REST-based model, resources are used to represent state and
functionality.	Resources	are	identified	through	logical	URLs.	In	a	typical	REST-based	
model, the client and the server communicate using requests and responses. The
client sends a request to the server for a resource and the server in turn sends the
response back to the client.

The main design goals of the REST architectural style include:

•	 Independent deployment of the components
•	 Reduced latency
•	 High security of service interactions
•	 Scalability
•	 High performance

Chapter 1

[7]

The basic difference between SOAP and REST is that while the former emphasizes
verbs,	the	latter	emphasizes	resources.	In	REST,	you	define	resources,	and	then	
use a uniform interface to operate on them using the HTTP verbs. It should also be
noted that REST is simpler to use, because it heavily leverages the HTTP transport
mechanism for formatting, caching, routing, and operations performed on the given
resources. On the contrary, with SOAP, there are no such conventions. A SOAP-
based service can easily be exposed via TCP/IP, UDP, SMTP, or any other transport
protocol. So, it doesn't have to be dependent on the HTTP protocol.

In a REST-based model, a request is comprised of an endpoint URL, a developer
ID, parameters, and the desired action. The endpoint URL is used to represent the
complete	address.	The	developer	ID	is	a	key	which	uniquely	identifies	each	request	
origin. The desired action is used to denote the action to be performed.

The REST architecture makes use of some common HTTP methods for CRUD
(Create, Read, Update, and Delete) operations. These are as follows:

•	 GET: This is used	to	request	for	a	specific	representation of a resource.
•	 HEAD: This is used to retrieve the resource headers only.
•	 PUT: This is used to update a resource.
•	 DELETE: This is used	to	delete	the	specified	resource.
•	 POST: This is used to submit data that is to be processed by the	identified	

resource. Ideally, POST should be used for only creating resources, while PUT
is used for only updating them.

Resources in REST-based architecture
The resource concept is one of the most important ones in REST. A few examples of
public implementations of REST include the following:

•	 Google Fusion Tables
•	 Sones GraphDB: A graph-oriented database written in C#
•	 Nuxeo: An open-source document manager

A	resource	is	identified	using	a	URI.	In	the	REST	style	of	architecture,	communication	
between a server and a client takes place using requests and responses. The client (also
known as the consumer) requests for a resource from the server. The server then sends
the response back to the client.

Understanding Representational State Transfer Services

[8]

In the REST architectural paradigm, resources are used to represent the state and
functionality	of	the	resources.	They	are	identified	by	using	logical	URIs	so	that	
they can be universally addressable. The REST architecture is essentially based
on HTTP—a stateless protocol. However , resources can be cached as and when
required. Note that since HTTP provides cache mechanism, REST implemented on
top	of	the	HTTP	protocol	provides	the	features	and	benefits	of	HTTP.	Also,	you	can	
set cache expiration policies for the cached data.

Any REST request comprises of the following components:

•	 An endpoint URL: This denotes the complete address of the script.
•	 Developer ID: This is a key that is sent with each request. This is used to

identify the origin of the request. Note that the developer ID is not required
for all REST services.

•	 Parameters: This denotes the parameters of the request. This is optional.
•	 Desired action: This denotes the action for the particular request. Actions

are based on the HTTP verbs.

Let's take an example. The following link is a typical REST request URL:
http://localhost/payroll?devkey=1&action=search&type=department&
keyword=DepartmentID.

In the previous request, the endpoint is http://localhost/payroll, the desired
action is search and the developer key is 1. You also have the type and keyword
parameters provided in the request. Please refer to the following code snippet, which
shows how a REST request and response looks like:

<?xml version="1.0" encoding=" UTF-8"?>
<Request>
<RequestId>1R3ABC</RequestId>
<Parameters>
<Argument Name="devkey" Value="1" />
<Argument Name="action" Value="search" />
<Argument Name="type" Value="department" />
<Argument Name="keyword" Value="phone" />
</Parameters>
</Request>
<Response>
<ResultCount>2</ResultCount>
<Record>
<FirstName>Joe</FirstName>
<LastName>Stagner</LastName>
<DepartmentID>1</DepartmentID>

Chapter 1

[9]

</Record>
<Record>
<FirstName>Stephen</FirstName>
<LastName>Smith</LastName>
<DepartmentID>1</DepartmentID>
</Record>
</Response>

The REST architectural constraints
The REST architectural paradigm defines	the	following	constraints	to	the	architecture:

Client-server
A RESTful implementation is based on a client-server model. The servers and the
clients	are	clearly	isolated.	This	implies	that	the	servers	and	clients	can	be	modified	
independently. The server is not at all concerned with the user interface. Similarly,
the user interface is not concerned about how data is persisted.

Stateless
The REST architecture is based on the stateless HTTP protocol. In a RESTful
architecture, the server responses can be cached by the clients. Any request from
the client to the server should have enough information so that the request can be
understood and serviced, but no client context would be stored in the server. This
type of design ensures that the servers are more visible for performance monitoring
and are scalable.

Cacheable
In a typical REST architecture, the clients should be able to cache data. To manage
cache better, the architecture allows us to set whether a response can be cached or
not. This feature improves scalability and performance.

Code on demand
The servers in a REST architecture can (if needed) extend or customize the
functionality of a particular client. This is known as "code on demand"; this feature
allows the servers in a REST architecture implementation to transfer logic to the
clients if such a need arises.

Understanding Representational State Transfer Services

[10]

Uniform interface
The	REST	architectural	style	defines	a	uniform	interface between the clients and the
servers;	therefore,	it	allows	only	a	limited	set	of	operations	that	are	defined	using	the	
standard HTTP verbs, such as, GET, PUT, POST, and DELETE.

Resource management
Resource is the most important concept in the REST style architecture. Resources
are	identified	using	unique	URIs.	Note	that	resource	representations	can	exist	in	any	
combination of any digital format (HTML, XML, JSON, RSS, and so on).

It should be noted here that the actual resource usually has
only one representation on the server. It is the client who
specifies	in	which	representation	it	will	accept	the	resources;	
that is, how they should be formatted.

SOAP, REST, and XML-RPC – a closer look
Simple Object Access Protocol (SOAP) is a simple, light weight, stateless,
XML-based protocol that can be used for exchangeing data between heterogeneous
systems in a distributed environment. SOAP can be used to transfer data,
irrespective of the platform and language in use. A typical SOAP message format
is as follows:

<SOAP: Envelope>
 <SOAP: Header>
 </SOAP: Header>
 <SOAP: Body>
 </SOAP: Body>
</SOAP: Envelope>

The following code is an example of a SOAP request:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <ns1:RequestHeader
 soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
 soapenv:mustUnderstand="0"
 xmlns:ns1="https://www.example.com/getData/P007">

Chapter 1

[11]

 <ns1:authentication xsi:type="ns1:ClientLogin"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <ns1:token>SuchALongToken</ns1:token>
 </ns1:authentication>
 <ns1:networkCode>ABC-XYZ-0012345</ns1:networkCode>
 <ns1:applicationName>Sample</ns1:applicationName>
 </ns1:RequestHeader>
 </soapenv:Header>
 <soapenv:Body>
 <getProductData xmlns="https://www.example.com/getData/P007">
 <filterData>
 <query>WHERE productId IS NOT NULL</query>
 </filterData>
 </getProductData>
 </soapenv:Body>
</soapenv:Envelope>

The following code snippet illustrates the SOAP response for the previous request:

<soap:Envelope xmlns:soap=
 "http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 <ResponseHeader xmlns="https://www.example.com/getData/P007">
 <requestId>Some Request Id</requestId>
 <responseTime>26</responseTime>
 </ResponseHeader>
 </soap:Header>
 <soap:Body>
 <getProductDataResponse xmlns=
 "https://www.example.com/getData/P007">
 <rval>
 <totalResultSetSize>1</totalResultSetSize>
 <startIndex>0</startIndex>
 <results>
 <productId>7</productId>
 <productName>CTV</productName>
 <description>Samsung LED Color Television</description>
 <status>Active</status>
 <productCode>P007</productCode>
 </results>
 </rval>
 </getProductDataResponse>
 </soap:Body>
</soap:Envelope>

Understanding Representational State Transfer Services

[12]

Note that SOAP can be used without the HTTP protocol, and SOAP always uses the
POST operation. SOAP makes use of XML and the stateless HTTP protocol (if used
with HTTP) to access services. A typical SOAP request looks like the following code:

GET /price HTTP/1.1
Host: http://localhost
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/
 12/soap-envelope"
 xmlns:m="http://localhost/product">
 <soap:Header>
 <m:DeveloperKey>1</t>
 </soap:Header>
 <soap:Body>
 <m:GetProductPrice>
 <m:ProductCode>P001</m:ProductCode>
 </m:GetProductPrice>
</soap:Body>
</soap:Envelope>

In reference to the previous code snippet, the Body section of the SOAP request
contains the actual XML request object that is sent. The following code snippet
illustrates a typical SOAP response:

HTTP/1.1 200 OK
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/
 12/soap-envelope"
 xmlns:m="http://localhost/product">
 <soap:Body>
 <m:GetProductPriceResponse>
 <m:Price>1008.78</m:Price>
 </m:GetProductPriceResponse>
 </soap:Body>
</soap:Envelope>

REST is an architectural paradigm that is used to model how data is represented,
accessed,	and	modified	on	the	Web.	REST	uses	the	stateless	HTTP	protocol	and	the	
standard HTTP operations (GET, PUT, POST, and DELETE) to perform CRUD operations.
REST allows you to do all that you can do with SOAP and XML-RPC. Along with that,
you	can	use	firewalls	for	security	and	also	use	caching	for	enhanced	performance.	The	
REST counterpart for the same request is simple, and is shown as follows:

GET /product?ProductCode=P001 HTTP/1.1
Host: http://localhost

Chapter 1

[13]

The REST response to the previous request would be as simple. It is shown in the
following code snippet:

HTTP/1.1 200 OK
<?xml version="1.0"?><m:Price xmlns:m=
 "http://localhost/product">1008.78</m:Price>

XML-RPC is a XML-based remote procedure calling protocol. The following code
snippet is an example of a typical XML-RPC POST request:

POST /product HTTP/1.1
Host: http://localhost
<?xml version="1.0"?>
<methodCall>
 <methodName>product.GetProductPrice</methodName>
 <params>
 <param>
 <value><string>P001</string></value>
 </param>
 </params>
</methodCall>

In response to the previous XML-RPC request, the following code snippet is how a
typical XML-RPC response would look:

HTTP/1.1 200 OK
<?xml version="1.0"?>
<methodCall>
 <methodName>product.GetProductPrice</methodName>
 <params>
 <param>
 <value><double>1008.78</double></value>
 </param>
 </params>
</methodCall>

Understanding Representational State Transfer Services

[14]

Understanding Windows Communication
Foundation
Windows Communication Foundation (WCF) is a Microsoft framework that
provides	a	unification	of	distributing	technologies (Web Services, Remoting, COM+,
and	so	on)	under	a	single	umbrella.	The	WCF	Framework	was	first	introduced	in	
2006 as part of the .NET Framework 3.0. It is a framework comprised of a number
of technologies to provide a platform for designing applications that are based
on SOA and have the capability to intercommunicate. According to Microsoft, at
http://msdn.microsoft.com/en-us/library/bb907578.aspx,

Windows Communication Foundation (WCF) is a unified framework for creating
secure, reliable, transacted, and interoperable distributed applications. In earlier
versions of Visual Studio, there were several technologies that could be used for
communicating between applications.

 The three most important concepts related to the WCF architecture include services,
clients,	and	messages.	The	following	figure	examines	the	building	blocks	of	the	
WCF architecture.

WCF client

WCF

Microsoft .NET
Framework

SOAP WCF Service

WCF

Microsoft .NET
Framework

The WCF and .NET framework

The three most important concepts related to the WCF architecture are: services,
clients, and messages. Contracts in the WCF can be of three types: service contract,
data contract, and message contract.

Chapter 1

[15]

WCF works on a contract-based approach. A WCF Service class is one that
implements at least one service contract. A service contract is an interface that is
used	to	define	the	operations	that	are	exposed	by	the	WCF	Service class. A WCF
Service class is just like any other .NET class, except that it is marked with the
ServiceContract	attribute.	A	message	contract	may	be	defined	as	a	way	that	
allows you to change the format of the messages. Note that the ServiceContract,
DataContract,	and	other	related	attributes	are	defined	in	the	System.ServiceModel
namespace. Binding in WCF is used to specify how a particular service would
communicate with other services of its kind and/or with other clients (also known
as consumers).

Also, any method that is preceded by the OperationContract attribute is externally
visible to the clients for SOAP-callable operations. If you have a method that doesn't
have this attribute set, the method would not be included in the service contract, and
so the WCF client would not be able to access that operation of the WCF service.

 The following is a list of the pre-defined,	built-in	bindings	in	the	WCF:

•	 BasicHttpBinding
•	 MsmqIntergrationBinding
•	 WSHttpBinding
•	 WSDualHttpBinding
•	 WSFederationHttpBinding
•	 NetTcpBinding
•	 NetNamedPipeBinding
•	 NetMsmqBinding
•	 NetPeerTcpBinding

Endpoints in the WCF are used to associate a service contract with its address.
Channels are actually a bridge between the service and its client. The following
types of supported channels are available in the WCF:

•	 Simplex Input
•	 Simplex Output
•	 Request-Reply
•	 Duplex

Understanding Representational State Transfer Services

[16]

Note that a WCF service is based on three concepts: address, binding, and contract.
Also, a WCF service and a WCF client communicate using messages. The following
figure	examines	how	messages	are	used	for	communication	in	the	WCF:

WCF client
WCF Services and WCF Clients Communicate
using Messages

WCF Service

Communication in the WCF

These messages can, in turn, have one of the following patterns:

•	 Simplex
•	 Request-Reply
•	 Duplex

WCF 4.5 comes with improved support for REST-based features. In this section we
will	first	implement	a	simple	WCF	service,	and	then	make	the	necessary	changes	
to it make the service RESTful. The newer versions of the WCF provide improved
support for REST-based features.

REST attributes
Now, let's take a closer look at the WCF REST attributes and their purposes.
Incidentally, all these attributes are available in the System.ServiceModel.Web.dll
library. In this section, we will discuss the attributes of which we would frequently
make use while working with RESTful services.

WebServiceHost
The usage of the WebServiceHost attribute simplifies	hosting	of	web-based	services.	
It derives from the ServiceHost class and overrides the OnOpening method and
automatically adds the WebHttpBehavior class to the endpoint. The following code
snippet illustrates how the WebServiceHost attribute is used:

WebServiceHost host = new WebServiceHost(typeof(ClassName),
 baseAddress);
WebHttpBinding binding = new WebHttpBinding();
host.AddServiceEndpoint(typeof(ISomeContract),
 binding, "WebServiceHost");
host.Open();

Chapter 1

[17]

WebHttpBinding
The WebHttpBinding attribute produces an appropriate HTTP-based transport
channel. Here, the security is handled by the WebHttpSecurity class. Services can be
exposed using the WebHttpBinding binding by using either the WebGet attribute or
the WebInvoke attribute.

The following code snippet illustrates how the webHttpBinding attribute is used:

<configuration>
 <system.serviceModel>
 <services>
 <service name="PacktService">
 <endpoint binding="webHttpBinding"
 contract="PacktService"
 behaviorConfiguration="webHttp"/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior name="webHttp">
 <webHttp/>
 </behavior>
 </endpointBehaviors>
 </behaviors>
 </system.serviceModel>
<configuration>

WebHttpBehavior
The WebHttpBehavior attribute customizes the HTTP-based dispatching logic, and
it overrides operation selection, serialization, and invocation. The WebHttpBehavior
class in the System.ServiceModel.Description namespace is shown as follows:

public class WebHttpBehavior : IEndpointBehavior
{
 // Properties
 public virtual bool AutomaticFormatSelectionEnabled {
 get; set; }
 public virtual WebMessageBodyStyle DefaultBodyStyle {
 get; set; }
 public virtual WebMessageFormat DefaultOutgoingRequestFormat {
 get; set; }
 public virtual WebMessageFormat DefaultOutgoingResponseFormat {
 get; set; }
 public virtual bool FaultExceptionEnabled { get; set; }

Understanding Representational State Transfer Services

[18]

 public virtual bool HelpEnabled { get; set; }
 protected internal string JavascriptCallbackParameterName {
 get; set; }
 // Methods
 public virtual void AddBindingParameters(ServiceEndpoint
 endpoint, BindingParameterCollection bindingParameters);
 protected virtual void AddClientErrorInspector(ServiceEndpoint
 endpoint, ClientRuntime clientRuntime);
 protected virtual void AddServerErrorHandlers(ServiceEndpoint
 endpoint, EndpointDispatcher endpointDispatcher);
 public virtual void ApplyClientBehavior(ServiceEndpoint
 endpoint, ClientRuntime clientRuntime);
 public virtual void ApplyDispatchBehavior(ServiceEndpoint
 endpoint, EndpointDispatcher endpointDispatcher);
 protected virtual WebHttpDispatchOperationSelector
 GetOperationSelector(ServiceEndpoint endpoint);
 protected virtual QueryStringConverter
 GetQueryStringConverter(OperationDescription
 operationDescription);
 protected virtual IClientMessageFormatter
 GetReplyClientFormatter(OperationDescription
 operationDescription, ServiceEndpoint endpoint);
 protected virtual IDispatchMessageFormatter
 GetReplyDispatchFormatter(OperationDescription
 operationDescription, ServiceEndpoint endpoint);
 protected virtual IClientMessageFormatter
 GetRequestClientFormatter(OperationDescription
 operationDescription, ServiceEndpoint endpoint);
 protected virtual IDispatchMessageFormatter
 GetRequestDispatchFormatter(OperationDescription
 operationDescription, ServiceEndpoint endpoint);
 public virtual void Validate(ServiceEndpoint endpoint);
 protected virtual void ValidateBinding(ServiceEndpoint
 endpoint);
}

WebOperationContext
The WebOperationContext attribute is	used	to	access	the	HTTP	specifics	
within methods. You can retrieve the current context using the
WebOperationContext.Current property. It provides properties for
incoming/outgoing request/response context.

The following code snippet illustrates how to get the HTTP status code:

HttpStatusCode status = WebOperationContext.
 Current.IncomingResponse.StatusCode;

Chapter 1

[19]

WebMessageFormat
This attribute is used to control the message format in your services.

Note that the WCF provides support for two primary web
formats: XML and JSON.

You can control the format of your messages using the RequestFormat and
ResponseFormat properties, as shown in the following code:

[OperationContract]
[WebGet(ResponseFormat = WebMessageFormat.Json, BodyStyle =
 WebMessageBodyStyle.WrappedRequest)]
public Employee GetData()
{
 return new Employee
 {
 Firstname = "Joydip",
 Lastname = "Kanjilal",
 Email = "joydipkanjilal@yahoo.com";
 };
}

WebGet
The WebGet attribute exposes operations using the GET verb. In other words, the
WebGet attribute is used to map the incoming HTTP GET requests to particular WCF
operations	by	using	URI	mapping.	How	this	attribute	is	defined	in	the	System.
ServiceModel.Web namespace is shown in the following code snippet:

[AttributeUsageAttribute(AttributeTargets.Method)]
public sealed class WebGetAttribute : Attribute,
 IOperationBehavior

An example that illustrates how you can use the WebGet attribute is shown
as follows:

[OperationContract]
 [WebGet(UriTemplate="/employee/{id}")]
 public Employee GetEmployee(int id)
 {
 Employee empObj = null;
 // Get employee object from the database
 return empObj;
 }

Understanding Representational State Transfer Services

[20]

WebInvoke
The WebInvoke attribute exposes services that use other HTTP verbs, such as POST,
PUT, and DELETE. In other words, the WebInvoke attribute is used for all the other
HTTP verbs other than the GET requests. The following code snippet shows how this
attribute	is	defined	in	the	System.ServiceModel.Web namespace:

[AttributeUsageAttribute(AttributeTargets.Method)]
public sealed class WebInvokeAttribute : Attribute,
 IOperationBehavior
Here is an example that illustrates the usage of the WebInvoke
attribute:
[OperationContract]
 [WebInvoke(Method = "DELETE", UriTemplate = "/employee/{id}")]
 public void DeleteEmployee(int id)
 {
 // Code to delete an employee record in the database
 }

UriTemplate
The UriTemplate class belongs to System.UriTemplate and implements the
URI template syntax that enables you to specify variables in the URI space.
UriTemplate is a class that represents a URI template. UriTemplate is a URI string
that contains variables enclosed by braces ({, }). Note that the UriTemplate property
is	specified	on	the	WebGet and WebInvoke attributes that we used earlier to identify
an employee resource.

The following code snippet illustrates how UriTemplate is used:

[WebGet(UriTemplate =
 "RetrieveUserDetails/{userCode}/{projectCode}")]
public string RetrieveUserDetails(string userCode,
 string projectCode)
 {

 }

The following table lists the important HTTP methods and their uses:

Method Description
GET This is used to request for a representation of a specific resource
PUT This is used to create or update a resource with a specific representation
DELETE This is used to delete a specific resource
POST This is used to submit data that is to be processed by a particular resource
HEAD This is similar to GET, but it retrieves only the headers

Chapter 1

[21]

The	HTTP	protocol	also	defines	a	list	of	standard	status	codes	that	are	used	to	specify	
the result of processing of a particular request. The following table lists the standard
HTTP status codes and their uses:

Status Code Description
100 Informational
200 Successful
201 Created
202 Accepted
300 Redirection
304 Not modified
400 Client error
402 Payment required
404 Not found
405 Method not allowed
500 Server error
501 Not implemented

REST-based web services
A RESTful web service (or the RESTful Web API) is a service that comprises a
collection of resources. These resources include a base URI that is used to access
the	web	service,	a	MIME	type	(that	is,	JSON,	XML,	and	so	on),	and	a	set	of	defined	
operations (that is, POST, GET, PUT, or DELETE). A RESTful service is platform and
language	neutral.	However,	unlike	a	Web	Service,	there	isn't	any	official	standard	set	
for RESTful services. REST is just an architectural style; it is devoid of any standards
as such. The basic advantages of using REST are transport neutrality and the facility
to use advanced WS-* protocols. REST is interoperable, simple to use, and has a
uniform interface.

Learning RESTful web services
RESTful web services are services that are based on the REST architectural paradigm.
Essentially, these (also known as a RESTful Web API) are web services that are
comprised of a collection of resources. These resources are given as follows:

•	 A base URI used to access the web service
•	 A	MIME	type,	which	defines	the	format	of	the	data	that	the	web	service	

supports, that is, JSON, XML, and so on

Understanding Representational State Transfer Services

[22]

•	 A set of operations that the web service supports using the HTTP methods
that include POST, GET, PUT, or DELETE

Similar to web services, a REST service is platform and language independent, based
on	HTTP,	and	can	be	used	even	with	firewalls.	Note	that	unlike	web	services	that	are	
based	on	the	SOAP	protocol,	there	is	no	official	standard	for	RESTful	services.	REST	
is simply an architectural style that doesn't have any set standards. The following
code snippet illustrates an example of a SOAP request:

<?xml version = "1.0"?>
<soap:Envelope>
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body emp="http://localhost/payroll">
 <emp:GetEmployeeDetails>
 <emp:EmployeeID>1</emp:EmployeeID>
 </emp:GetEmployeeDetails>
 </soap:Body>
</soap:Envelope>

The following URLshows how the same can be represented using REST:

http://localhost/payroll/EmployeeDetails/1

The RESTful web services map the HTTP methods to the corresponding CRUD
operations. The previous two tables show how these are mapped:

•	 HTTP Method: CRUD Action
•	 GET: Retrieve a resource
•	 POST: Create a new resource
•	 PUT: Update an existing resource
•	 DELETE: Delete an existing resource
•	 HEAD: Retrieves metadata information on a resource

Implementing RESTful services
in .NET 4.5
In this section, we will implement a RESTful service using the WCF. The WCF is
a framework based on the Service Oriented Architecture (SOA) that is used to
design distributed applications, which are applications that have the capability to
intercommunicate. We will explore more about the WCF in Chapter 3, Working with
Restful Services.

Chapter 1

[23]

The UserNamePasswordValidator class
The UserNamePasswordValidator class has been introduced in the newer versions
of the WCF. You can use this class to design and implement your own custom
validators for validating a user's credentials.

The UserNamePasswordValidator class in the System.IdentityModel.Selectors
namespace can be used to validate user credentials in WCF 4.5. You can create your
own custom validator by simply extending the UserNamePasswordValidator class,
and then overriding the Validate method, as shown in the following code snippet:

using System;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.ServiceModel;
namespace Packt
{
 public class PacktValidator : UserNamePasswordValidator
 {
 public override void Validate(String userName,
 String password)
 {
 if (!userName.Equals("joydip")) ||
 !password.Equals("joydip1@3"))
 {
 throw new SecurityTokenException("User Name and/or
 Password incorrect...!");
 }
 }
 }
}

Then, you can configure	the	validator	you	just	created	in	the	configuration	file,	as	
shown in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <system.serviceModel>
 <services>
 <bindings>
 <wsHttpBinding>
 <binding name="PacktAuthentication">
 <security mode="Transport">

Understanding Representational State Transfer Services

[24]

 <transport clientCredentialType="Basic" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

 <behaviors>
 <serviceBehaviors>
 <behavior name="PacktValidator.ServiceBehavior">
 <serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType="Packt.
 PacktValidator, Packt"/>
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </services>
 </system.serviceModel>
</configuration>

The new enhancements in WCF 4.5 include the following:

•	 Simplified	configuration
•	 Standard endpoints
•	 Discovery
•	 Simplified	IIS	Hosting
•	 REST improvements
•	 Workflow	services
•	 Routing service
•	 Automatic Help page

Simplified configuration
WCF 4.5 starts with the	default	configuration	model.	The	configuration	in	WCF	4.5	
is much simpler in comparison with its earlier counterparts. In WCF 3.x, you needed
to specify the endpoints, behavior, and so on for the service host. With WCF 4.5,
default endpoints, binding information, and behavior are provided. In essence, WCF
4.0	eliminates	the	need	of	any	WCF	configuration	when	you	are	implementing	a	
particular WCF service.

Chapter 1

[25]

There	are	a	few	standard	endpoints	and	default	binding/behavior	configurations	that	
are created for any WCF service in WCF 4.5. This makes it easy to get started with the
WCF,	because	the	tedious	configuration	details	of	WCF	3.x	are	no	longer	required.

Consider the following WCF service:

using System;
using System.ServiceModel;
namespace PacktService
{
 [ServiceContract]
 public interface ITestService
 {
 [OperationContract]
 String DisplayMessage();
 }

 public class TestService : ITestService
 {
 public String DisplayMessage()
 {
 return "Hello World!";
 }
 }
}

In WCF 4.5, you can use ServiceHost to host the WCF service without the need for
any	configuration	information	whatsoever.	The	following	code	is	all	that	you	need	to	
host your WCF service and display the address, binding, and contract information:

using System.ServiceModel;
using System;
using System.ServiceModel.Description;
namespace PacktClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost serviceHost = new ServiceHost
 (typeof(PacktService.TestService));
 serviceHost.AddServiceEndpoint
 (typeof(PacktService.TestService),
 new BasicHttpBinding(),
 "http://localhost:1607/
 TestService.svc");

Understanding Representational State Transfer Services

[26]

 serviceHost.Open();
 foreach (ServiceEndpoint serviceEndpoint
 in serviceHost.Description.Endpoints)
 Console.WriteLine("Address: {0}, Binding: {1},
 Contract: {2}", serviceEndpoint.Address,
 serviceEndpoint.Binding.Name,
 serviceEndpoint.Contract.Name);
 Console.ReadLine();
 serviceHost.Close();
 }
 }
}

The following code is an example	of	all	the	configuration	information	that	you	need
to specify to consume your service in WCF 4.5:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled ="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Note that the BasicHttpBinding binding used is by default. If you want to choose
a more secure binding, such as WSHttpBinding, you can change the binding
information by using the following code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled ="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <protocolMapping>
 <add binding="wsHttpBinding" scheme ="http"/>
 </protocolMapping>
 </system.serviceModel>
</configuration>

Chapter 1

[27]

Standard endpoints
Standard endpoints are	preconfigured	endpoints	in	the	WCF	Framework	4.5.	You	
can always re-use them, but they don't generally change.

You can use any of the previous endpoints by referencing them in the
<configuration> element using the endpoint name. An example of the same is
given as follows:

<configuration>
 <system.serviceModel>
 <services>
 <service name="PacktService">
 <endpoint kind="basicHttpBinding" contract="IMyService"/>
 <endpoint kind="mexEndpoint" address="mex" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Discovery
There are two modes of operation. They are given as follows:

•	 Ad-Hoc mode: In this mode, there is no centralized server, and all service
announcements and client requests are sent in a multicast manner.

•	 Managed mode: In this mode, you have a centralized server. Such a server is
known as a discovery proxy, where the services are published centrally and
the clients who need to consume such published services connect to this to
retrieve the necessary information.

You can just add the standard udpDiscoveryEndpoint endpoint and also enable the
<serviceDiscovery> behavior to enable service discovery in the Ad-hoc mode.
The following code is an example of this:

<configuration>
 <system.serviceModel>
 <services>
 <service name="TestService">
 <endpoint binding="wsHttpBinding"
 contract="ITestService" />
 <!-- add a standard UDP discovery endpoint-->
 <endpoint name="udpDiscovery" kind="
 udpDiscoveryEndpoint"/>
 </service>

Understanding Representational State Transfer Services

[28]

 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="TestService.MyServiceBehavior">
 <!-- To avoid disclosing metadata information, set the
 value below to false and remove the metadata
 endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="true"/>
 <!-- To receive exception details in
 faults for debugging
 purposes, set the value below to true. Set to false
 before deployment to avoid disclosing exception
 information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 <serviceDiscovery />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Note that in the previous code snippet, a new endpoint has been added to discover
the service. Also, the ServiceDiscovery behavior has been added. You can use the
DiscoveryClient class to discover your service and invoke one of its methods.

You must create an instance of the DiscoveryClient class and pass
UdpDiscoveryEndPoint to the constructor of this class as a parameter to discover the
service. Once the endpoint has been discovered, the discovered endpoint address can
then be used to invoke the service. The following code snippet illustrates this:

using System;
using System.ServiceModel;
using System.ServiceModel.Discovery;
namespace PacktConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 DiscoveryClient discoverclient = new DiscoveryClient(new
 UdpDiscoveryEndpoint());
 FindResponse findResponse = discoverclient.Find(new
 FindCriteria(typeof(ITestService)));
 EndpointAddress endpointAddress =
 findResponse.Endpoints[0].Address;

Chapter 1

[29]

 MyServiceClient serviceClient = new MyServiceClient(new
 WSHttpBinding(), endpointAddress);
 Console.WriteLine(serviceClient.DisplayMessage());
 }
 }
}

WCF 4.5 also enables	you	to	configure	services	to	announce	their	endpoints	as	soon	
as	they	are	started.	The	following	code	shows	how	you	can	configure	your	service	to	
announce endpoints at the time it starts:

<configuration>
 <system.serviceModel>
 <services>
 <service name="TestService">
 <endpoint binding="wsHttpBinding"
 contract="ITestService"/>
 <endpoint kind="udpDiscoveryEndpoint"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceDiscovery>
 <announcementEndpoints>
 <endpoint kind="udpAnnouncementEndpoint"/>
 </announcementEndpoints>
 </serviceDiscovery>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Simplified IIS hosting
Hosting of WCF 4.5 applications on IIS has now become much easier. An example of
a simple WCF service is given as follows:

<!-- PacktService.svc -->
<%@ ServiceHost Language="C#" Debug="true" Service=" PacktService
 CodeBehind="~/App_Code/PacktService.cs" %>
[ServiceContract]
public class PacktService
{
 [OperationContract]

Understanding Representational State Transfer Services

[30]

 public string GetMessage()
 {
 return "This is a test service.";
 }
}

You can then enable service metadata for the service in the application's web.config
configuration	file,	as	shown	in	the	following	code	snippet:

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

You	can	also	define	virtual	service	activation	endpoints	for	your	WCF	4.5	services	
in your application's web.config	configuration	file.	By	doing	so,	you	can	activate	
your WCF service without the need for .svc	files.	You	need	to	specify	the	following	
configuration	in	your	application's	web.config	configuration	file	to	activate	your	
service without the need for a .svc	file:

<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment>
 <serviceActivations>
 <add relativeAddress="PacktService.svc"
 service="PacktService"/>
 </serviceActivations>
 </serviceHostingEnvironment>
 </system.serviceModel>
</configuration>

Improvements in REST
WCF 4.5 comes with improved support for REST-based features. You now have
support for an automatic help page that describes the REST-based services available
for the service consumers or clients. This feature is turned on by default, but you can
also	manually	configure	it,	as	shown	in	the	following	code	listing:

<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=
 "true" />

Chapter 1

[31]

 <behaviors>
 <endpointBehaviors>
 <behavior name="PacktTestHelpBehavior">
 <webHttp helpEnabled="true" />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service name="PacktSampleWCFService">
 <endpoint behaviorConfiguration="PacktTestHelpBehavior"
 binding="webHttpBinding"
 contract="PacktSampleWCFService" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

WCF 4.5 also comes with support for HTTP caching, which is done by using the
AspNetCacheProfile attribute. Note that the AspNetCacheProfile support actually
uses the standard ASP.NET output caching mechanism to provide you with caching
features in your WCF service.

To use this attribute, you should add a reference to the System.ServiceModel.Web.
Caching namespace. You can apply this attribute in a WebGet operation and specify
the cache duration of your choice. The following code snippet can be used in your
service contract method to make use of this feature:

using System.ServiceModel.Web.Caching;
[OperationContract]
[WebGet]
[AspNetCacheProfile("PacktCache")]
String GetProductName();

Accordingly, you should set	the	cache	profile	in	your	application's	web.config	file,	
as shown here:

<caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="PacktCache" duration="60" varyByParam="format"/>
 </outputCacheProfiles>
 </outputCacheSettings>
</caching>

Understanding Representational State Transfer Services

[32]

Implementing a RESTful Service using
WCF 4.5
In this section, we will	implement	our	first	RESTful	service	using WCF 4.5. To do
this, we need to follow these steps:

1. Create a WCF Service
2. Make the service RESTful
3. Specify binding information
4. Host the RESTful service
5. Consume the RESTful service

Creating a WCF service
A typical WCF implementation would have a WCF service and a WCF client. The
WCF client would consume the services provided by the WCF service.

Note that a WCF service contains:

•	 A Service class
•	 A hosting environment
•	 One or more endpoints

The Service class is written using a language targeted at the managed environment
of the .NET CLR. In essence, the Service class can be written in any .NET language
of your choice (we use C# throughout this book). The hosting environment is the
environment inside the context of which the WCF service would execute. The
endpoints enable the clients or the service consumers to access the WCF service.

There are two templates from which you can choose to create the WCF services:
the Visual Studio 2013 WCF service library template and the Visual Studio service
application template.

Let's	first	use	the	Visual	Studio	WCF	service	library	template	to	create	a	WCF	service.	
To do this, follow these steps:

1. Open Visual Studio 2013 IDE
2. Navigate to File | New | Project

Chapter 1

[33]

3. Select WCF Service Application from the list of templates displayed, as
shown in the following screenshot:

Creating a WCF Service Application Project

4. Provide a name for your project, and click on OK to save.

A	WCF	service	application	project	is	created.	At	first	glance,	the	Service class looks
like the following code:

using System;
namespace MyDataService
{
 // NOTE: You can use the "Rename" command on the "Refactor" menu to
change
 // the class name "Service1" in code, svc and config file together.
 public class Service1 : IService1
 {
 public string GetData(int value)
 {
 return string.Format("You entered: {0}", value);
 }

 public CompositeType GetDataUsingDataContract(
 CompositeType composite)
 {
 if (composite == null)
 {

Understanding Representational State Transfer Services

[34]

 throw new ArgumentNullException("composite");
 }
 if (composite.BoolValue)
 {
 composite.StringValue += "Suffix";
 }
 return composite;
 }
 }
}

The Service class in the previous code snippet implements the IService1 interface,
as shown here:

using System.Runtime.Serialization;
using System.ServiceModel;
namespace MyDataService
{
 // NOTE: You can use the "Rename" command on the "Refactor" menu
 // to change the interface name "IService1" in both code
 // and config file together.
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 string GetData(int value);
 [OperationContract]
 CompositeType GetDataUsingDataContract(
 CompositeType composite);
 // TODO: Add your service operations here
 }
 // Use a data contract as illustrated in the sample below
 // to add composite types to service operations.
 [DataContract]
 public class CompositeType
 {
 bool boolValue = true;
 string stringValue = "Hello ";
 [DataMember]
 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }

Chapter 1

[35]

 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
 }
}

Consider the following WCF service:

using System.ServiceModel;
namespace Test
{
 [ServiceContract]
 public interface ITestService
 {
 [OperationContract]
 String GetMessage();
 }
 public class TestService : ITestService
 {
 public string GetMessage()
 {
 return "Hello World!";
 }
 }
}

Note the usage of the OperationContract attribute in the
previous code snippet. This attribute is used to specify that a
particular operation is exposed to calls by clients.

To host this WCF service, you can write the following code:

using System;
using System.ServiceModel;
using Test;
namespace MyApp
{
 class Program
 {
 static void Main(string[] args)
 {

Understanding Representational State Transfer Services

[36]

 using (ServiceHost serviceHost = new
 ServiceHost(typeof(TestService)))
 {
 serviceHost.Open();
 Console.WriteLine("WCF Service has started...");
 Console.ReadLine();
 serviceHost.Close();
 }
 Console.WriteLine("The WCF Service has stopped...");
 }
 }
}

Making the service RESTful
When designing a RESTful service, you need to know the resources, the URIs that
would be used to map those resources, and the HTTP verbs that should be supported
by the resources.

In a typical WCF-REST based service, you would need the WebGet attribute, apart
from the OperationContract attribute you use to expose the operations of the
service. The WebGet attribute belongs to the System.ServiceModel.Web namespace.
A typical WebGet attribute for HTTP-GET operation is shown as follows:

[WebGet(UriTemplate =
"/payroll/getemployees.xml",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml,
 ResponseFormat = WebMessageFormat.Xml)]

The UriTemplate parameter of the WebGet	attribute	is	used	to	define	the	URL	
format for accessing the service operation. The RequestFormat and ResponseFormat
arguments are a part of the WebMessageFormat enumeration and can have one of
the two possible values: Xml and Json. The following code is how a typical WebGet
attribute for a HTTP-POST operation looks:

[GetOperationContract]
[WebInvoke(UriTemplate =
"/payroll/updateemployee.xml?
 employeecode={code}",
 Method = "POST",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml,
 ResponseFormat = WebMessageFormat.Xml)]

Chapter 1

[37]

To make the service we created earlier in this chapter RESTful, just change the contract
ITest and specify the WebGet attribute, as shown in the following code snippet:

[ServiceContract]
[WebGet()]
 public interface ITestService
 {
 [OperationContract]
 String GetMessage();
 }

Specifying the binding information
Now that we have created the service contract and the service, along with the
operations that the service would expose, we need to specify the binding information
for the service so that it can be assessable by service consumers or clients. In order for
a WCF service to be accessed by the clients, the service should expose endpoints. An
endpoint denotes the address, binding, and contract information for the service. To
specify the binding information for the service, open the App.Config	file	and	write	
the following code inside the <system.serviceModel> tag:

<system.serviceModel>
 <bindings>
 </bindings>
 <services>
 <service name ="Test.TestService"
 behaviorConfiguration="Default">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8080/Test"/>
 </baseAddresses>
 </host>
 <endpoint
 address=""
 binding ="basicHttpBinding"
 contract="Test.ITestService" />
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="Default">
 <serviceMetadata httpGetEnabled="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Understanding Representational State Transfer Services

[38]

In our example, we are using a RESTful service. So, we need to use the
webHttpBinding class, as shown here:

<service name ="Test.TestService" behaviorConfiguration="Default">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8080/Test"/>
 </baseAddresses>
 </host>
 <endpoint
 address=""
 binding ="webHttpBinding"
 contract="Test.TestService" />
</service>

Hosting the RESTful WCF service
There are many ways in which a WCF service can be hosted. For example, you
can host your WCF service in the IIS server, or by using the Windows Activation
Service (WAS). To host your WCF service in IIS, you must create a virtual directory,
and make it point to the directory where your service is located. Note that the WCF
services hosted in IIS can be accessed using SOAP over HTTP.

What you can specify in the App.Config	file	in	the	hosting	application	to	access	your	
WCF service hosted in IIS is as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled ="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <protocolMapping>
 <add binding="wsHttpBinding" scheme ="http"/>
 </protocolMapping>
 </system.serviceModel>
</configuration>

Chapter 1

[39]

Hosting the service inside the console application
You can also host your WCF service programmatically if the endpoints are properly
defined.	To	host	the	RESTful	WCF	service	we	created	earlier,	you	should	use	
WebServiceHost, as shown here:

using System;
using System.ServiceModel;
using System.ServiceModel.Web;
using Test;
namespace MyApp
{
 class Program
 {
 static void Main(string[] args)
 {
 using (WebServiceHost serviceHost = new
 WebServiceHost(typeof(TestService)))
 {
 serviceHost.Open();
 Console.WriteLine("WCF Service has started...");
 Console.ReadLine();
 serviceHost.Close();
 }
 Console.WriteLine("The WCF Service has stopped...");
 }
 }
}

Returning JSON data
You can return data in JavaScript Object Notation (JSON) format from your
REST-based WCF service. The following code snippet illustrates how you can return
data from your RESTful service in a JSON format by setting the attributes:

using System.Xml;
using System.Text;
using System.IO;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Channels;
using System.ServiceModel.Web;
namespace Test
{

Understanding Representational State Transfer Services

[40]

 [ServiceContract]
 public interface ITestService
 {
 [OperationContract]
 [WebGet(UriTemplate = "Test")]
 Message GetMessage();
 }
 public class TestService : ITestService
 {
 public Message GetMessage()
 {
 StringBuilder stringBuilder = new StringBuilder();
 using (XmlWriter xmlWriter =
 XmlWriter.Create(stringBuilder))
 {
 xmlWriter.WriteStartDocument();
 xmlWriter.WriteStartElement("Message");
 xmlWriter.WriteAttributeString("type", "Name");
 xmlWriter.WriteString("Joydip");
 xmlWriter.WriteEndElement();
 xmlWriter.WriteEndDocument();
 }
 TextReader textReader = new
 StringReader(stringBuilder.ToString());
 XmlReader xmlReader = XmlReader.Create(textReader);
 return Message.CreateMessage(MessageVersion.None, "",
 xmlReader);
 }
 }
}

Note that the WebGet attribute in the WCF is actually a part of the HTTP
programming model for the WCF. This attribute is used to invoke the WCF service
using the HTTP URI. In essence, the WebGet attribute is used to specify that the
service would respond to the HTTP GET requests.

The WebGet attribute accepts one of the following four parameters:

•	 BodyStyle: This is used to specify whether the requests or responses should
be wrapped

•	 RequestFormat: This is used to format the request messages
•	 ResponseFormat: This is used to format the response messages
•	 UriTemplate: This is used to specify the URI template for the HTTP requests

for a service operation

Chapter 1

[41]

The previous code snippet used an XmlWriter instance to create a message in XML
format. And, here is what the returned JSON data would look like:

{
"Message": [
 { "Name":"Joydip"},
]
}

Consuming the RESTful Service
To consume the RESTful service we created earlier in this section, you would need to
create a client application (ASP.NET or WPF), add a service reference to the service
we created in the earlier sections, and then use the service reference instance to
invoke the service methods. We will discuss this in detail in Chapter 3, Working with
Restful Services and Chapter 4, Consuming RESTful Services.

Summary
REST is now all set to be the architectural paradigm of choice for designing and
implementing scalable services. The RESTful Web Services expose resources
through URIs and use the HTTP methods to perform CRUD operations. The REST
architectural paradigm not only opens up a lot of possibilities, but also challenges. We
will explore these as we progress through the chapters of this book. This chapter gave
an introduction to REST, an architectural style for distributed hypermedia systems. In
the next chapter, we will explore Resource Oriented Architectures in detail.

Understanding Resource
and Service Oriented

Architectures
Software architecture refers to the overall structure of a system and the
interrelationships of entities and components that make up the system. There are
various architectural styles like Object Oriented Architecture, Service Oriented
Architecture, Cloud Oriented Architecture and Resource Oriented Architecture.

Service Oriented Architecture (SOA) and Resource Oriented Architecture (ROA)
are architectural design patterns that provide the concepts and the necessary
development tools and technologies for implementing distributed application
architectures. Distributed architectures comprises services that can be used by the
clients	over	a	network	by	using	well-defined	interfaces.	These	components	that	are	
used by the clients are named resources in ROA and services in SOA.

In this chapter, we will discuss the basics of Resource Oriented Architectures and
how they differ from Service Oriented and Object Oriented Architectures. We will
also explore the best practices in designing and implementing ROAs.

In this chapter, we will cover the following topics:

•	 SOA
•	 ROA
•	 What	is	resource	orientation?

 ° Resource orientation concepts
 ° Addressability
 ° Statelessness
 ° Representations

Understanding Resource and Service Oriented Architectures

[44]

•	 Resource Oriented Services and REST
•	 Resource Oriented Services and web services
•	 Read-only and Read/Write Resource Oriented Services
•	 Guidelines and best practices

Understanding SOA
SOA is an architectural paradigm where you have a collection of loosely coupled and
extensible	services,	each	service	having	the	capability	to	be	modified	independent	
of another in such a way that the integration of the services remain intact. SOA is
composed of a collection of discrete software modules known as services. These
services can exchange data and information with other services.

Note that the SOA architectural paradigm is based on functional decomposition of
the business architecture of an enterprise. In doing so, it introduces two distinct
high-level abstractions, that is, business services for the enterprise and business
processes for the enterprise. While the business services represent the business
functions	of	the	enterprise,	the	business	processes	define	the	functioning	of	the	
business of the enterprise.

SOA can be implemented using one of the following technologies:

•	 Web services
•	 Windows Communication Foundation
•	 CORBA
•	 DCOM
•	 JINI
•	 EJB

SOA enables an excellent integration of loosely coupled distributed applications
and services over a network. SOA is essentially a collection of services that can
communicate. Note that web services, J2EE, CORBA, and so on, are actually the
implementations of SOA. The most	important	benefits	of	a	service-oriented	design	
include the following:

•	 Platform and language independence
•	 Loose coupling
•	 Location transparency and reduced cost of maintenance
•	 Support for seamless updates over time
•	 Easier maintenance and seamless deployment

Chapter 2

[45]

•	 An SOA design is comprises a number of elements, including the following:

 ° Service
 ° Service provider
 ° Service consumer
 ° Service registry
 ° Service contract

Let's look at each of these in more detail.

Service
A service	may	be	defined	as	an	implementation	of	a	well-defined,	self-contained,	and	
independent business functionality that has the capability of accepting one or multiple
requests,	and	returning	one	or	multiple	responses	using	a	well-defined	standard	
interface. A service is independent of the technology on which it is implemented; so
the interface to the service should be platform independent. A service should also have
the capability to be discovered dynamically and called at runtime. A service provides
business functions as service operations to the service consumer.

A service is a unit of design, implementation, and deployment artifact that is used
for	implementation	of	enterprise	architectures.	A	service	is	defined	using	a	verb.	
For example, validate a customer's credentials; this describes the business function
it	implements.	A	service	implementation	defines	a	service	interface	in	either	an	RPC	
style or a messaging style. Although the former uses service invocation techniques,
the	latter	executes	a	service	operation	as	defined	in	the	service	semantics.

Service provider
The service provider is a network-addressable entity that provides the service.
Note that in SOA, a service provider can also be a service consumer.

Service consumer
The service consumer is the entity that consumes (or uses) the services provided by
the service provider by locating the service in the service registry, binding to the
service, and then executing the service methods. A service consumer is also known
as the service client or simply the client.

Understanding Resource and Service Oriented Architectures

[46]

Service registry
The service registry is a network-based repository of published services. At runtime,
this registry is used by the service consumers to locate a service and bind to it. The
advantages of using a service registry includes:

•	 Scalability
•	 Loose coupling
•	 Hot updates
•	 Dynamic service lookup

Service contract
The service contract	is	a	specification	that	denotes	how	the	service	consumer	would	
interact	with	the	service	provider	for	a	particular	service.	The	following	figure	
illustrates the relationship between service contract and its implementation

Business Logic Data

Contract InterfaceImplementation

Service

Relationship between service contract and service implementation

Service proxy
The service proxy is a reference to the service at the service consumer's end—it is
provided by the service provider to facilitate the service method calls. A service
consumer or service client uses this proxy to invoke one or more service methods.

Service lease
The service lease	is	a	predefined	duration	that	denotes	the	lifetime	of	a	service.	
This implies a time after which the service would no longer be valid. Note that, as
and when this time period elapses, the service consumer should request the service
registry to grant a fresh, new service lease so that the service consumer can regain
access to the service and execute the service methods.

Chapter 2

[47]

Message
Service providers and service consumers communicate through messages. So,
messages are the medium of communication between service providers (that is, the
providers of the services) and service consumers (that is, the consumers of the services).
Note	that	such	messages	are	essentially	made	available	in	a	predefined	XML	format.	In	
addition to the XML format, it can also be in the JSON format or any other format upon
which	both	the	service	provider	and	consumer	mutually	agreed	upon.	The	figure	given	
below shows that a service communicates with another through the usage of messages

Service 1

Messages

Service 2

A service communicates with another service through messages

Messages

Services communicate with one another using message exchanges

Service description
The service description	is	a	specification	that	contains	the	information	that	is	
necessary to invoke a service. Such information may include the parameters,
the	constraints,	and	the	policies	that	define	how	the	service	should	be	invoked.

Advertising and discovery
Advertising and discovery are two of the most essential properties in SOA. Although
the former relates to the capability of a service to publish its description so as to be
located by the service consumers, the latter relates to the capability of the service
consumers to discover the published services from the service registry and then
invoke them as (and when) necessary.

From object orientation to SOA to ROA
to REST
Call-based distributed systems have one of the following architectural styles:

•	 Object Oriented Architectures
•	 SOAs
•	 ROAs

Object Oriented Architectures deal with object instances, and communications are
implicitly stateful. State information is stored on the server side. Each access to an
object instance involves a round trip communication.

Understanding Resource and Service Oriented Architectures

[48]

SOAs revolve around a service and the endpoint it exposes. SOAs are stateless and
scalable easily because of their stateless nature. The REST architectural paradigm
treats all entities in the world as connected resources and re-uses the existing HTTP
infrastructure. The ability to cache requests, ability to perform stateless interactions,
scalability,	simplicity,	agility,	and	flexibility	are	some	of	the	benefits	of	this	
architecture. However, lack of references, lack of tools support, and lack of a proper
standardization are the disadvantages of this architecture.

A service does have an interface, and can be referenced during its lifetime. It doesn't
necessarily	have	a	state.	Each	service	has	an	interface	description	that	defines	the	
message and payload formats. A service can be discovered and dynamically bound.
It is modular, self-contained, interoperable, addressable, and locatable via a network.
A	service	can	also	be	composed	of	other	services.	The	following	figure	illustrates	the	
relationship between service consumer, service provider, and a service broker.

Bind

Find Publish

Service Consumer Service Provider

Service Broker
(Registry)

Relation between service provider, service consumer, and service broker

Services are made available to the clients (service consumers) by publishing the
services in a repository named Service Broker (Registry). The Service Consumer
(service client) locates the service, uses a service proxy, and then invokes one or more
service	methods	using	the	service	proxy	instance	The	following	figure	shows	how	a	
service consumer talks to the service registry.

Bind

Find Publish

Service Provider

Service Broker
(Registry)

WSDL

Service ProxyImplementation
Code

Service Consumer

The service consumer talks to the service registry and the service provider using a service proxy

Chapter 2

[49]

ROAs are	stateless,	and	revolve	around	a	resource.	Each	resource	is	identified	using	
a URI. You can always have multiple copies of the same resource. In Resource
Oriented Architecture, requests are usually stateless: there is no link among one
request and the next. Resource lifecycle is managed using verbs, that is, HTTP, PUT,
HTTP, DELETE, and so on.

REST services are easier to implement than SOAP-based SOA. Also, REST services
provide a support for better caching, lightweight requests and responses, and
reduced	network	traffic.

REST constraints are design rules applied to the REST architectural style. We will
explore more on these design constraints in the next chapter.

These REST constraints are:

•	 Client-server
•	 Stateless
•	 Cache
•	 Interface / Uniform Contract
•	 Layered system
•	 Code-On-Demand

SOA and ROA are two distinctly different architectural paradigms. In the former,
a service is what is given importance. However, in the latter, resources are given
importance. So, verbs are given importance in SOA, while nouns are given importance
in ROA. In ROA, the common verbs used for resource life cycle management include
PUT and DELETE. We will explore this later in this book.

The key REST principles are given as follows:

•	 A resource should have an ID
•	 Link related resources
•	 Use standard methods
•	 Resources can have multiple representations
•	 Communicate statelessly

A look at ROA
ROA is primarily based on the concept of a resource. A resource is a distributable
component that can be accessed through a standard, common interface. Each
resource	is	associated	to	a	unique	identifier	that	comprises	a	URL.

Understanding Resource and Service Oriented Architectures

[50]

The main concepts of ROA are centered on resources. Resources should have the
following characteristics:

•	 A resource should be unique and maybe linked to other related resources.
•	 A resource should have a minimum of one representation.
•	 A resource should have attributes and schema, it should be accessible

(through its address), and it should provide a context.
•	 A resource should have name; this is used to identify a resource uniquely.

Resources	are	identified	using	URIs.

Although a resource link is used to represent another representation of the same
resource or another resource, a resource interface is used to provide an interface to
access a resource and manipulate its state information. A resource is represented
using URIs. Note that data is a resource if it can be represented using a URI.

Examples of resources and URIs are as follows:

•	 http://www.mysoftware.com/software/releases/1.0.0.1.zip

•	 http://www.mysoftware.com/software/releases/1.0.0.2.zip

•	 http://www.mystore.com/search/Books/NewBook

No two resources can be the same, but two or more resources can point to the same
data. Here is an example:

•	 http://www.packtpub.com/sales/2012/Q4

•	 http://www.packtpub.com/sales/2012/Q3

The	following	figure	shows		the	relationship	amongst	a	resource,	its	representation,	
and its URI:

Representation

Resource

Person

URI

has

owns

may have

Relation between Resource, Representation, and URI

Chapter 2

[51]

Basic properties of ROAs
The six basic properties that an ROA implementation should hold include
the following:

•	 Addressability: This denotes the ability to share data and information
via URIs.

•	 Statelessness: This implies that every request on a RESTful web service
should be self-contained. In order to achieve this statelessness nature, all
calls to a RESTful service should contain relevant bits of application state
in each request.

•	 Connectedness: This implies that resources should contain links to
related resources.

•	 Representation: A resource can have multiple representations. Each of
these representations should have similar URIs. In essence, a URI should
contain	sufficient	information	needed	by	the	server	to	produce	the	desired	
representation. A representation is actually the description of a resource.
The representation of a resource distinctly describes its state information.

 ° Resource link: This is used to represent another representation of the
same resource or another resource.

 ° Resource interface: This is used to provide an interface to access
a resource and manipulate its state information.

Basic concepts of ROAs
The four basic concepts that an ROA implementation should hold include:

•	 Addressability: Addressability of a resource is its ability to expose its data
through well-formed URIs.

•	 Statelessness: This implies that every HTTP (moreover, because HTTP is a
stateless protocol) request occurs in complete isolation.

•	 Connectedness: Connectedness is the ability of a resource to be connected
with another resource. In essence, it is established using links to data of the
same kind.

•	 A uniform interface: A RESTful service should have a uniform interface
defined	by	HTTP's	primary	methods,	that	is,	GET,	PUT,	POST,	DELETE,	
and so on. Two or more representations of a particular resource are distinctly
identified	using	URIs.

Understanding Resource and Service Oriented Architectures

[52]

Fundamental HTTP concepts
In this section, we will discuss the basics of HTTP protocol.

The following table shows the common HTTP methods and their purpose:

Method name Purpose
DELETE This is used to delete a resource
GET This is used to request for a specific representation of a resource
HEAD This is same as GET, but it retrieves only the headers and not the body
OPTIONS This is used to retrieve the methods supported by the resource
POST This is used to post or submit data to be processed by the resource
PUT This is used to create or update data using a particular representation

of a resource

The following table shows the HTTP status codes and their purposes:

Status code Description
100 Informational
200 Successful
201 Created
202 Accepted
300 Redirection
304 Not modified
400 Client error
402 Payment required
404 Not found
405 Method not allowed
500 Server error
501 Not implemented

The following table shows the HTTP redirection status codes:

Status Code Description
300 Multiple choices
301 Moved permanently
302 Found (temporary redirection)

Chapter 2

[53]

The following table shows the HTTP error status codes:

Status code Description
400 Bad request
401 Unauthorized
403 Forbidden
404 Resource not found
405 Method not allowed
408 Request timeout
409 Conflict
413 Request entity too large
415 Unsupported media type

The following table shows the HTTP server error status codes:

Status Code Description
500 Internal server error
501 Not implemented
503 Service unavailable
505 HTTP version not supported

The following table lists some resource methods and how they can be implemented
using the HTTP protocol:

Method name Description HTTP operation
createResource This creates a new resource PUT

getResourceRepresentation This is used to retrieve the
representation of a particular
resource

GET

deleteResource This deletes a resource DELETE

modifyResource This modifies a resource POST

getMetaInformation This retrieves metadata of a
resource

HEAD

In the section that follows, we will explore ROA. We will discuss what a resource
implies, the constraints, and so on.

Understanding Resource and Service Oriented Architectures

[54]

Resource Oriented and Service Oriented
Architecture
The SOA and ROA architectural design paradigms provide a way to build robust
distributed	architectures.	In	essence,	ROA	is	a	specific	set	of	guidelines	for	a	RESTful	
architecture. ROA is a structural design that provides support for internetworking
of	resources.	A	resource	is	an	entity	that	can	be	identified	using	a	URI.	Servers,	
computers, computer devices, web pages, scripts, and so on, are all resources in the
context of ROA. While SOA is verb oriented, ROA is noun oriented.

ROAs involve retrieval of particular resource instances. Requests in an ROA are
stateless. The resource lifecycle management verbs include PUT, DELETE, GET, and
POST. In an ROA, you have a service provider that maintains a collection of resources.
This service provider exposes some basic operations, such as the following:

•	 Creation of new resources
•	 Retrieval of resources
•	 Modification	of	resources
•	 Deletion of resources

Here is a list of the core operations supported by RESTful services:

•	 GET: This is an	operation	that	returns	the	state	of	the	identified	resource
•	 POST: This is an operation that is used to update a particular resource
•	 PUT: This operation is used to create a new resource
•	 DELETE: This operation is used to delete or destroy a particular resource

Resource
ROAs mainly thrive on a resource. A resource is a distributed component that is
handled	using	a	standard	common	interface.	A	resource	is	essentially	defined	using	
a noun. An employee's employment contract is an example of a resource—it
describes the data that the resource represents. Note that a resource can be related or
linked to other resources. ROA is based on the principle that any entity that can be
assigned	a	uniform	resource	identifier	can	be	called	a	resource.

Note that no two resources can be the same though they
can point to the same data. A resource can have one or
many URIs. For example, you can have the same sales
data available at multiple URIs.

Chapter 2

[55]

A	resource	is	identified	using	the	following:

•	 Resource name: This is a unique	name	that	identifies	a	resource
•	 Resource representation: This provides metadata information about the

current state of a resource
•	 Resource link: This is a link to the same resource or other resources
•	 Resource interface: This is a uniform interface that is used for assessing the

resource and manipulating the state of the resource

Uniform resource identifier
Each resource is identified	by	having	a	URI	of	its	own.	The	URI	is	the	name	and	
address of the resource. URIs should be descriptive, as shown here:

http://www.packtpub.com/sales/2012/Q4

http://www.packtpub.com/sales/2012/Q3

Note that a resource can have one or more URIs. For
example,	the	details	of	the	sales	figures	for	Q4	of	2012	
can also be available at a different URI, as shown here:

http://www.packtpub.com/sales/2012/Q4

http://www.packtpub.com/sales/year/2012/Q4

In the preceding example, both the URIs point to the
same resource.

Addressability
Addressability is an interesting aspect of every ROA. We may say that an application
is addressable if it exposes its data as resources. Now, resources in ROA are exposed
using URIs. So, we may say that in order for an application to be addressable, it
should expose its data through URIs.

Statelessness
Statelessness is another important aspect of an ROA. This implies that each and
every HTTP request is isolated, that is, it occurs in complete isolation.

Understanding Resource and Service Oriented Architectures

[56]

Representations
Representation is	defined as some data that depicts the current state of a resource.
For example, when a web server sends data as a series of bytes, it is a representation
of a resource.

Comparison of the three architectural
styles
When choosing the architectural style that suits your business requirements, there
are points aplenty that you have to consider. The following table compares the
different architectural styles:

Attribute Object Oriented Resource Oriented Service Oriented
Granularity Object instances Resource instances Service instances
Support for caching
responses

No Yes No

Payload Yes, it is usually
middleware specific

No, you have
nothing that is
linked to a particular
address or URL

Yes, the WSDL
schema

Addressing or
request routing

Unique object
instance

Unique address of a
particular resource

Endpoint address
of the service

Coupling between
server and client

Tight coupling due
to object serialization
and early binding to
interfaces

Loose coupling due
to late binding to
resource data

Loose coupling
due to late
binding to service
interfaces

An OOA is best suited when the coupling or cohesion between the server and the
client components is tight and is therefore best suited for closed systems.

Service Oriented Architectures involve loose coupling amongst the client and the
server components due to late binding to a service interface. These systems are
flexible,	and	tend	to	scale	well	because	of	their	stateless	nature.	These	architectures	
are best suited for shared systems that can work across organization boundaries.
The	following	figure	shows	the	comparison	between	Service	Oriented	and	Object	
Oriented architectures:

Chapter 2

[57]

Service Oriented Architecture

EAI AOP Web Services BPM

Object Oriented Architecture

RPC Modular
Programming

Procedural
Programming

Comparison between SOA and OOA

Resource-oriented systems involve loose coupling between the server and the client
components, and they are best suited in scenarios where you need late binding and
cache-ability of resource data. These systems are scalable due to their stateless nature.

In essence, ROA is an architectural paradigm that thrives on four basic concepts:
resources, the names of the resources, the representations of the resources, and
the links between the resources. It is also based on four distinct properties:
addressability, statelessness, connectedness, and a uniform interface.

Choosing the right architectural style entirely depends on your business
requirements. In essence, you can design a web service application that can use a
combination of architectural styles with a resource-oriented approach for simple data
reads and a service-oriented approach for complex data operations.

You can refer to the following site:

http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

Understanding Resource and Service Oriented Architectures

[58]

Summary
In OOP, the focus is on creating objects that contain both state and behavior.
On the contrary, SOA is built on top of OOP, and allows you to create reusable
services. While OOP focuses on what an application comprises, SOA focuses on the
functionality of the application. ROA is based on the concept of resources. While
a service represents execution of a requested operation, a resource represents the
data access mechanism for a particular instance of a given data type. A resource is
a distributed component that is handled through a standard, common interface.
Resources are addressable using URIs.

This chapter presented a description of the fundamental concepts related to ROA,
web services, and SOA. It presented an introduction to ROA and how it differs from
other contemporary architectural styles, such as OOP and SOA. We discussed how
the three architectural paradigms differ, and also the concepts of ROA.

In the next chapter, we will put all these concepts into practice, discuss the concepts
and characteristics of RESTful web services, and explore how we can design and
implement RESTful services by using WCF.

Working with
RESTful Services

Now that we have a good grasp of the concepts of REST and resources, let's explore
how we can create RESTful services using WCF. In this chapter, we will discuss WCF
in depth, and then create a RESTful service. Note that a RESTful service exposes
resources as URIs, and uses HTTP methods to perform CRUD operations.

In this chapter, we will cover the following points:

•	 Exploring WCF
•	 WCF bindings
•	 WCF security
•	 Creating a WCF service
•	 Making the WCF service RESTful
•	 Specifying the binding information
•	 Hosting the service

We will start this chapter with an in-depth discussion of Windows Communication
Foundation (WCF)—the technology of choice for building scalable, secure services.

Exploring Windows Communication
Foundation (WCF)
Windows Communication Foundation (WCF), is a framework based on the Service
Oriented Architecture (SOA). WCF can be used to design applications that can
have the ability to intercommunicate. WCF was initially named as "Indigo", and was
introduced as part of.NET Framework 3.0 in 2006.

Working with RESTful Services

[60]

WCF supports	unification	of	the	existing	.NET	technologies.	It	provides	a	great	
platform for unifying Microsoft's distributing technologies—Web Services,
Remoting, COM+, and so on, under a single roof. WCF also provides support
for cross-platform interoperability, security, service-oriented development, and
reliability.	It	helps	you	build	service-oriented	applications	by	leveraging	the	benefits	
of .NET's managed environment.

WCF Client

Microsoft .NET
Framework

SOAP WCF Service

WCF WCF

Microsoft .NET
Framework

WCF on top of .NET's managed framework

WCF is based on three distinct concepts—address, binding, and contract.

Address implies the	location	of	the	service.	Binding	specifies	the	communication	
protocol to be used, that is, it denotes how a particular service can communicate with
other services or with other clients. Contract denotes the parts of the service that are
exposed. The client connects to the service through the endpoints that are exposed by
the service.

Here is the list of the predefined	built-in bindings in WCF:

•	 BasicHttpBinding
•	 MsmqIntergrationBinding
•	 WSHttpBinding
•	 WSDualHttpBinding
•	 WSFederationHttpBinding
•	 NetTcpBinding
•	 NetNamedPipeBinding
•	 NetMsmqBinding
•	 NetPeerTcpBinding

Chapter 3

[61]

Endpoints in WCF are used to associate a service contract with its address. Channel
is a bridge between a service and its client. Here are the types of supported channels
in WCF:

•	 Simplex Input
•	 Simplex Output
•	 Request-reply
•	 Duplex

WCF messages can be in one of the following patterns:

•	 Simplex
•	 Request-Reply
•	 Duplex

WCF Services and WCF Clients Communicate
using Messages

WCF Service WCF Client

WCF Services and WCF Clients communicate with each other using messages

You can have three contracts in WCF—a service contract, a data contract, and a
message contract. Any WCF service class implements at least one service contract—an
interface	that	is	used	to	define	the	operations	that	are	exposed	by	the	WCF	service	
class. Such operations may also include data operations—exposed using data
contracts.	A	service	contract	is	an	interface	that	is	used	to	define	the	operations	that	
are exposed by the WCF service class. Actually, a WCF service class is just like any
other class, except that it is marked with the ServiceContract attribute. A message
contract	may	be	defined	as	an	application	that	allows	you	to	change	the	format	of	the	
messages. Note that ServiceContract, DataContract, and other related attributes are
defined	in	the	System.ServiceModel namespace.

Also, any method that is preceded by the OperationContract attribute is externally
visible to the clients for SOAP-callable operations. If you have a method that doesn't
have this attribute set, the method would not be included in the service contract, and
so the WCF client would not be able to access that operation of the WCF service.

Working with RESTful Services

[62]

Applying service behavior
You can use the ServiceMetadataBehavior	attribute	element	to	configure	a	behavior	
to apply to a service. This can be done with the following code:

<behaviors>
 <behavior>
 <ServiceMetadata httpGetEnabled="true" />
 </behavior>
</behaviors>
<services>
 <service
 name="DemoService"
 <endpoint
 address="http://Joydip-PC:8080/Demo"
 contract="IDemoService"
 binding="basicHttpBinding" />
 </endpoint>
 </service>
</services>

New features in WCF 4.5
In this section, we will revisit the new features and enhancements in WCF 4.5.
The new and enhanced features in WCF 4.5 include the following:

•	 Simplified configuration: WCF 4.5 provides support for a much simpler
configuration.	It	provides	default	endpoints,	binding,	and	behavior.

•	 Standard endpoints: WCF 4.5 provides	support	for	preconfigured	
standard endpoints. The standard endpoints available in WCF 4.5
include dynamicEndPoint, discoveryEndpoint, udpDiscoveryEndpoint,
announcementEndpoint, udpAnnouncementEndpoint, mexEndPoint,
webHttpEndpoint,	webScriptEndpoint,	and	workflowControlEndpoint.

•	 Discovery: WCF 4.5 provides the ability to resolve service endpoints
dynamically,	based	on	some	predefined	criteria.

•	 Simplified IIS Hosting: WCF 4.5 provides	support	for	simplified	hosting	
services	in	the	IIS	with	easy-to-use	configuration.

•	 Better support for REST: WCF 4.5 provides enhanced support for the design
and development of REST-based services.

•	 Routing service: WCF 4.5 provides support for routing. You can host
a routing service in much the same way you host a WCF service.
Routing service provides versioning, protocol bridging, transaction
and error-handling support.

Chapter 3

[63]

•	 Workflow services: WCF 4.5 provides support for integrating WCF services
and WF services. You can now implement declarative services seamlessly.
You	also	have	a	much	improved	infrastructure	for	hosting	workflow	
services in IIS.

Enhancements in the WCF Framework
The WCF Framework was first	introduced	in	2006	as part of .NET Framework 3.0.
It is a framework that comprises a number of technologies to provide a platform
for designing applications that are based on SOA, which can have the capability to
intercommunicate.

The new enhancements in WCF in .NET Framework 3.5 include the following:

•	 Support for Ajax-enabled WCF services
•	 Improved support for WCS standards
•	 A new WCF designer
•	 New WCF tools (WcfSvcHost and WcfTestClient)
•	 Support for REST-based WCF services
•	 Support for WCF and WF interactivity

Another great new feature in WCF 3.5 is the introduction of the
UserNamePasswordValidator class. You can use this class to design and implement
your own custom validators for validating a user's credentials.

The UserNamePasswordValidator class in the System.IdentityModel.Selectors
namespace can be used to validate user credentials in WCF 3.5. You can create your
own custom validator simply by extending the UserNamePasswordValidator class
and then overriding the Validate method, as shown in the following code:

using System;
using System.IdentityModel.Selectors;
using System.IdentityModel.Tokens;
using System.ServiceModel;
namespace Packt
{
 public class PacktValidator : UserNamePasswordValidator
 {
 public override void Validate(String userName, String
 password)
 {
 if (!userName.Equals("joydip")) ||
 !password.Equals("joydip1@3"))

Working with RESTful Services

[64]

 {
 throw new SecurityTokenException("User Name and/or
 Password incorrect...!");
 }
 }
 }
}

You	can	then	configure	the	validator	you	just	created	in	the	configuration	file,	as	
shown here:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <system.serviceModel>
 <services>
 <bindings>
 <wsHttpBinding>
 <binding name="PacktAuthentication">
 <security mode="Transport">
 <transport clientCredentialType="Basic" />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

 <behaviors>
 <serviceBehaviors>
 <behavior name="PacktValidator.ServiceBehavior">
 <serviceCredentials>
 <userNameAuthentication
 userNamePasswordValidationMode="Custom"
 customUserNamePasswordValidatorType=
 "Packt.PacktValidator, Packt"/>
 </serviceCredentials>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

The new enhancements in WCF 4.5 include the following:

•	 Simplified	configuration
•	 Standard endpoints

Chapter 3

[65]

•	 Discovery
•	 Simplified	IIS	Hosting
•	 REST improvements
•	 Workflow	services
•	 Routing services
•	 An automatic Help page

Simplified configuration
WCF 4.5 starts up with the default configuration	model.	Configuration	in	WCF	4.5	
is	much	simplified	compared	to	its	earlier	counterparts.	In	WCF	3.x, you needed
to specify the endpoints, behavior, and so on, for the service host. With WCF 4.5,
default endpoints, binding information, and behavior are provided by default. In
essence,	WCF	4.5	eliminates	the	need	for	any	WCF	configuration	when	you	are	
implementing a particular WCF service.

There	are	a	few	standard	endpoints	and	default	binding/behavior	configurations	
that are created by default for any WCF service in WCF 4.5. This makes it easy to
get	started	with	WCF,	because	the	tedious	configuration	details	of	WCF	3.x are no
longer required.

Consider the following WCF service:

using System;
using System.ServiceModel;
namespace PacktService
{
 [ServiceContract]
 public interface ITestService
 {
 [OperationContract]
 String DisplayMessage();
 }

 public class TestService : ITestService
 {
 public String DisplayMessage()
 {
 return "Hello World!";
 }
 }
}

Working with RESTful Services

[66]

In WCF 4.5, you can use ServiceHost to host the WCF service without the need for
any	configuration	information	whatsoever.	The	following	is	all	the	code	you	need	to	
host your WCF service and display the address, binding, and contract information:

using System.ServiceModel;
using System;
using System.ServiceModel.Description;
namespace PacktClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost serviceHost = new ServiceHost
 (typeof(PacktService.TestService));
 serviceHost.AddServiceEndpoint
 (typeof(PacktService.TestService),
 new BasicHttpBinding(),
 "http://localhost:1607/
 TestService.svc");
 serviceHost.Open();
 foreach (ServiceEndpoint serviceEndpoint
 in serviceHost.Description.Endpoints)
 Console.WriteLine("Address: {0}, Binding: {1},
 Contract: {2}", serviceEndpoint.Address,
 serviceEndpoint.Binding.Name,
 serviceEndpoint.Contract.Name);
 Console.ReadLine();
 serviceHost.Close();
 }
 }
}

The following is an example	of	all	the	configuration	information	you	need	to	specify
and consume your service in WCF 4.5:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled ="true"/>
 </behavior>

Chapter 3

[67]

 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Note that the binding used by default is BasicHttpBinding. If you want to choose
a more secure binding (such as WSHttpBinding), you can change the binding
information, as shown in the following code snippet:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled ="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <protocolMapping>
 <add binding="wsHttpBinding" scheme ="http"/>
 </protocolMapping>
 </system.serviceModel>
</configuration>

Standard endpoints
Standard endpoints are	preconfigured	endpoints	in	WCF Framework 4.5. You can
always reuse them, but they don't generally change. The following table lists the
standard endpoints in WCF 4.5 and their purposes.

You can use any of the endpoints shown in the previous example by referencing
them in the <configuration> element using the endpoint name. The following
is an example:

<configuration>
 <system.serviceModel>
 <services>
 <service name="PacktService">
 <endpoint kind="basicHttpBinding" contract="IMyService"/>
 <endpoint kind="mexEndpoint" address="mex" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Working with RESTful Services

[68]

Discovery
There are two modes of operation:

•	 Ad-hoc mode: In this mode, there is no centralized server, and all service
announcements and client requests are sent in a multicast manner.

•	 Managed mode: In this mode, you have a centralized server. Such a server
is known as a discovery proxy, where the services are published centrally,
and the clients who need to consume such published services connect to this
mode to retrieve the necessary information.

You can just add the standard udpDiscoveryEndpoint endpoint and also enable the
<serviceDiscovery> behavior to enable service discovery in the Ad-hoc mode. The
following is an example:

<configuration>
 <system.serviceModel>
 <services>
 <service name="TestService">
 <endpoint binding="wsHttpBinding"
 contract="ITestService" />
 <!-- add a standard UDP discovery endpoint-->
 <endpoint name="udpDiscovery"
 kind="udpDiscoveryEndpoint"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="TestService.MyServiceBehavior">
 <!-- To avoid disclosing metadata information, set the
 value below to false and remove the metadata
 endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="true"/>
 <!-- To receive exception details in faults for
 debugging purposes, set the value below to true.
 Set to false before deployment to avoid
 disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 <serviceDiscovery />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Chapter 3

[69]

In the preceding code snippet, note how a new EndPoint has been added to discover
the service. The ServiceDiscovery behavior has also been added. You can use the
DiscoveryClient class to discover your service and invoke one of its methods.

You must create an instance of the DiscoveryClient class and pass
UdpDiscoveryEndPoint to the constructor of this class as a parameter to discover the
service. Once the endpoint has been discovered, its address can be used to invoke the
service. The following code snippet illustrates this:

using System;
using System.ServiceModel;
using System.ServiceModel.Discovery;
namespace PacktConsoleApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 DiscoveryClient discoverclient = new
 DiscoveryClient(new UdpDiscoveryEndpoint());
 FindResponse findResponse = discoverclient.Find(new
 FindCriteria(typeof(ITestService)));
 EndpointAddress endpointAddress =
 findResponse.Endpoints[0].Address;
 MyServiceClient serviceClient = new
 MyServiceClient(new WSHttpBinding(),
 endpointAddress);
 Console.WriteLine(serviceClient.DisplayMessage());
 }
 }
}

WCF	4.5	also	enables	you	to	configure	services	to	announce	their	endpoints	as	soon	
as	they	are	started.	You	can	configure	your	service	to	announce	endpoints	at	start	
time with the following code:

<configuration>
 <system.serviceModel>
 <services>
 <service name="TestService">
 <endpoint binding="wsHttpBinding"
 contract="ITestService"/>
 <endpoint kind="udpDiscoveryEndpoint"/>
 </service>
 </services>
 <behaviors>

Working with RESTful Services

[70]

 <serviceBehaviors>
 <behavior>
 <serviceDiscovery>
 <announcementEndpoints>
 <endpoint kind="udpAnnouncementEndpoint"/>
 </announcementEndpoints>
 </serviceDiscovery>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Simplified IIS hosting
Hosting of WCF 4.5 applications on IIS has now become easy. The following is an
example of a simple WCF service:

<!-- PacktService.svc -->
<%@ ServiceHost Language="C#" Debug="true" Service=" PacktService
 CodeBehind="~/App_Code/PacktService.cs" %>
[ServiceContract]
public class PacktService
{
 [OperationContract]
 public string GetMessage()
 {
 return "This is a test service.";
 }
}

You can then enable service metadata for the service in the application's web.config
configuration	file	as	shown	in	the	following	code	snippet:

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior>
 <serviceMetadata httpGetEnabled="true"/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>

Chapter 3

[71]

You	can	also	define	virtual	service	activation	endpoints	for	your	WCF	4.5	services	in	
your application's web.config	configuration	file.	In	doing	so,	you	can	activate	your	
WCF service without the need of any .svc	files.	Here	is	the	configuration	you	need	
to specify in your application's web.config	configuration	file	to activate your service
without the need of a .svc	file:

<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment>
 <serviceActivations>
 <add relativeAddress="PacktService.svc"
 service="PacktService"/>
 </serviceActivations>
 </serviceHostingEnvironment>
 </system.serviceModel>
</configuration>

REST improvements
WCF 4.5 comes with improved support for REST-based features. You now have
support for an automatic Help page that describes the REST-based services available
for service consumers or clients. This feature is turned on by default, though you can
manually	configure	the	same,	as	shown	in	the	following	code	listing:

<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true"
 />
 <behaviors>
 <endpointBehaviors>
 <behavior name="PacktTestHelpBehavior">
 <webHttp helpEnabled="true" />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service name="PacktSampleWCFService">
 <endpoint behaviorConfiguration="PacktTestHelpBehavior"
 binding="webHttpBinding"
 contract="PacktSampleWCFService" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Working with RESTful Services

[72]

WCF 4.5 also comes with support for HTTP caching using the	AspNetCacheProfile	
attribute.	Note	that	the	AspNetCacheProfile	support	actually	uses	the	standard	
ASP.NET output caching mechanism to provide you with caching features in your
WCF service.

To use this attribute, you should add a reference to the System.ServiceModel.Web.
Caching namespace. You can apply this attribute in a WebGet operation and specify
the cache duration of your choice. The following code snippet can be used in your
service contract method to make use of this feature:

using System.ServiceModel.Web.Caching;
[OperationContract]
[WebGet]
[AspNetCacheProfile("PacktCache")]
String GetProductName();

Accordingly,	you	should	set	the	cache	profile	in	your	application's	web.config	file	
as shown in the following code:

<caching>
 <outputCacheSettings>
 <outputCacheProfiles>
 <add name="PacktCache" duration="60" varyByParam="format"/>
 </outputCacheProfiles>
 </outputCacheSettings>
</caching>

Routing service
Routing is a feature in WCF 4.5 that is used to determine how a message should be
forwarded, and when a request from the client appears. Filters determine how the
routing service redirects the requests that come in from the client to a particular
WCF	service.	These	filters	are	mapped	with	the	corresponding	WCF	service	
endpoints	using	a	routing	table.	The	following	are	the	available	filter	types:

•	 Action
•	 Address
•	 AddressPrefix
•	 And
•	 Custom
•	 Endpoint
•	 MatchAll
•	 XPath

Chapter 3

[73]

The Routing service in WCF 4.5 provides support for the following features:

•	 Message routing
•	 Versioning
•	 Error handling
•	 Transaction handling
•	 Protocol bridging

In WCF 4.5, you have the RoutingService class that you can use to implement
generic WCF routing mechanisms in your application. The following is how the
RoutingService class looks:

[ServiceBehavior(AddressFilterMode = AddressFilterMode.Any,
 InstanceContextMode = InstanceContextMode.PerSession,
 UseSynchronizationContext = false, ValidateMustUnderstand =
 false)]
public sealed class RoutingService : ISimplexDatagramRouter,
 ISimplexSessionRouter,
 IRequestReplyRouter, IDuplexSessionRouter
{
 //Some code
}

Hosting RoutingService is as simple as hosting a WCF service. You must simply
create an instance of ServiceHost, and then specify RoutingService for the service
type. The following is an example:

public static void Main()
{
 ServiceHost serviceHost = new
 ServiceHost(typeof(RoutingService));
 try
 {
 serviceHost.Open();
 Console.WriteLine("Routing Service started...");
 Console.WriteLine("Press <ENTER> to stop the Routing
 Service.");
 Console.ReadLine();
 serviceHost.Close();
 }
 catch (CommunicationException ce)
 {
 Console.WriteLine(ce.Message);
 serviceHost.Abort();
 }
}

Working with RESTful Services

[74]

The routing section consists	of	two	sections,	filters	and	filterTables.	All	the	filters	that	
are	created	for	the	routing	are	located	in	the	filters	section.	For	each	filter,	we	have	to	
specify	the	name	and	type.	Here,	the	filterData	is	EndpointName.	There	are	different	
kinds	of	filter	types	available:

•	 EndpointName
•	 XPath
•	 Action
•	 And
•	 Custom

Once RoutingService has been started by making a call to the Open() method on the
ServiceHost instance, it can route messages as needed. The following is an example
of	a	typical	configuration	you	would	use	to	specify	the	routing	information	for	your	
routing service:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.serviceModel>
 <services>
 <service name="System.ServiceModel.Routing.RoutingService"
 behaviorConfiguration="TestBehavior">
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:1809/TestService"/>
 </baseAddresses>
 </host>
 <endpoint
 address=""
 binding="wsHttpBinding"
 name="TestRoutingEndpoint"
 contract="System.ServiceModel.Routing.
 IRequestReplyRouter"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="TestBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 <serviceDebug includeExceptionDetailInFaults="True"/>
 <routing routingTableName="ServiceRouterTable"/>
 <!--The Router Table Contains Entries for services-->
 </behavior>
 </serviceBehaviors>
 </behaviors>

Chapter 3

[75]

 <!--Define Services Here-->
 <client>
 <endpoint
 name="PacktService" binding="wsHttpBinding"
 address="http://localhost:2709/Services/PacktService.svc"
 contract="*">
 </endpoint>
 </client>
 <!--Routing Defination-->
 <routing>
 <!--Filter For Detecting Messages Headers to redirect-->
 <filters>
 <filter name="TestFilter" filterType="MatchAll"/>
 </filters>
 <!--Define Routing Table, This will Map the service with
 Filter-->
 <routingTables>
 <table name="ServiceRouterTable">
 <entries>
 <add filterName="TestFilter"
 endpointName="PacktService"/>
 </entries>
 </table>
 </routingTables>
 </routing>
 </system.serviceModel>
</configuration>

Note that the routing service shown in the previous code snippet is hosted at
http://localhost:1809/TestService. It uses wsHttpBinding.

You	can	also	configure	RoutingService	with	message	filters.	To	do	this,	you	need
to	enable	RoutingBehavior	on	RoutingService	and	then	specify	configuration	
information, similar to what is shown in the following code snippet:

<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="PacktServiceRoutingBehavior">
 <serviceMetadata httpGetEnabled="True"/>
 <routing filterTableName="myFilterTable" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
</system.serviceModel>
</configuration>

Working with RESTful Services

[76]

The automatic Help page
The WebHttpBehavior class in WCF 4.5 comes with support for an automatic Help
page. This class contains a property named HelpEnabled that you can turn on or off
as	needed.	Here	is	how	you	configure	this	automatic	help	feature:

<configuration>
 <system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />
 <behaviors>
 <endpointBehaviors>
 <behavior name="PacktHelpBehavior">
 <webHttp helpEnabled="true" />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <services>
 <service name="PacktTestService">
 <endpoint behaviorConfiguration="HelpBehavior"
 binding="webHttpBinding"
 contract="PacktTestService" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

In the next section, we will explore bindings in WCF, and why they are useful.

Bindings in WCF
A binding is used to specify the transport channel (HTTP, TCP, pipes,
Message Queuing) and the	protocols	(Security,	Reliability,	Transaction	flows).	
A binding comprises of binding elements. These binding elements denote how an
endpoint communicates with service consumers. WCF provides support for nine
built-in	bindings.	In	WCF,	the	three	major	sections	in	WCF	configuration	scheme	are	
serviceModel, bindings, and services, shown as follows:

<configuration>
 <system.serviceModel>
 <bindings>
 </bindings>
 <services>
 </services>
 <behaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Chapter 3

[77]

Here's	how	you	specify	binding	information	in	the	configuration	file:

<service name="Demo">
 <endpoint
 address="/Test/"
 contract="ITest "
 binding="basicHttpBinding" />
 </endpoint>
</service>

The	address	attribute	specifies	the	URI	(absolute	or	relative	path)	that	other	
endpoints would use to communicate with the service. The contract attribute denotes
the contract that this endpoint is exposing, and the binding attribute is used to select
a	predefined	or	custom	binding	to	use	with	the	endpoint.	In	this	section,	we	will	
explore bindings in WCF.

BasicHttpBinding
BasicHttpBinding exposes WCF services as legacy ASMX web services, and supports
both HTTP and secure HTTP. It supports both Text as well as MTOM encoding
methods. However, this type of binding doesn't support WS-* standards, such as
WS-Addressing, WS-Security, and WS-ReliableMessaging shown as follows:

<bindings>
 <basicHttpBinding>
 <binding name="Demo">
 <security mode="Transport">
 <transport clientCredentialType="None"/>
 </security>
 </binding>
 </basicHttpBinding>
</bindings>

WsHttpBinding
WsHttpBinding encrypts a SOAP message by default, and supports both HTTP and
HTTPS. It supports both Text as well as MTOM encoding methods. It also supports
WS-* standards, such as WS-Addressing, WS-Security, and WS-ReliableMessaging.
This type of binding uses message security by default. You can specify an HTTPS
endpoint	to	provide	authentication,	integrity,	and	confidentiality	shown	as	follows:

<binding name="Demo">
 <security mode="TransportWithMessageCredential">
 <transport clientCredentialType="None"/>
 <message clientCredentialType="IssuedToken"/>
 </security>
</binding>

Working with RESTful Services

[78]

netTcpBinding
netTcpBinding provides support for transactions and security. It is based on the
TCP protocol, and uses binary as the encoding method. It is the most optimized and
fastest binding among all the binding types supported by WCF. It uses transport
security by default. Note that IIS 6.0 cannot host netTcpBinding applications.

<client>
 <endpoint name="Demo" address="net.tcp://localhost:8523/
SecurityService"
 binding="netTcpBinding" contract="ISecurityService" >
 <identity>
 <servicePrincipalName value="SecurityService/Joydip-PC" />
 </identity>
 </endpoint>
</client>

MsmqIntegrationBinding
This binding supports transaction, uses transport security, and is optimized for
creating WCF clients and services that interoperate with non-WCF MSMQ endpoints.
The MsmqIntegrationBinding class in the System.ServiceModel namespace maps
MSMQ messages to WCF messages. MsmqIntegrationBinding provides out of the
box binding for communication with MSMQ.

netMsmqBinding
netMsmqBinding uses MSMQ as the transport channel, and is used in a cross
machine environment with secure and reliable queued communication. Note that
WCF provides support for two bindings to communicate with MSMQ; that is,
MsmqIntegrationBinding and netMsmqBinding. Although the former can be used
in heterogeneous architectures where WCF is exchanging information with other
MSMQ clients and services, the latter is used in homogenous architectures, that is,
in architectures where the services and clients are both WCF based.

netNamedPipeBinding
This is typically used for cross-process communication, it uses transport security
for message transfer and authentication, supports message encryption and signing,
and uses named pipes for message delivery. This binding provides secure and
reliable named pipe-based communication between WCF services and WCF clients
on the same system. The following code snippet illustrates how a typical service
configuration	would	look	when using netNamedPipeBinding:

<services>
<service name="DemoService"
 behaviorConfiguration="DemoServiceBehavior">

Chapter 3

[79]

 <host>
 <baseAddresses>
 <add baseAddress="net.pipe://localhost/DemoService"/>
 </baseAddresses>
 </host>
 <endpoint address="" binding="netNamedPipeBinding"
 contract="IDemoService"></endpoint>
</service>
</services>
And here is how the netNamedPipeBinding client configuration would
look like:
<client>
<endpoint
 address="net.pipe://localhost/DemoService.svc"
 binding="netNamedPipeBinding"
 contract="IDemoService"></endpoint>
</client>

netPeerTcpBinding
This is used to provide secure binding for peer-to-peer network applications. You
can use WCF netPeerTCPBinding to develop a peer-to-peer networking applications
that make use of a TCP-level peer-to-peer mesh infrastructure. To use this type of
binding, you should have Peer Name Resolution Protocol (PNRP) installed on your
machine. If it is not available, you can install it manually using Add or Remove
Programs in the Control Panel. You should also ensure that PNRP and its dependent
services are running in your system. The following code snippet illustrates how you
can	configure	netPeerTcpBinding:

<endpoint
address="net.p2p://localhost/TestWCFService/"
binding="netPeerTcpBinding"
bindingConfiguration="netp2pBinding"
contract="ITestWCFService">
<bindings>
 <netPeerTcpBinding>
 <binding name="netP2P" >
 <resolver mode="Pnrp" />
 <security mode="None" />
 </binding>
</netPeerTcpBinding>
</bindings>

Working with RESTful Services

[80]

WsDualHttpBinding
WsDualHttpBinding provides all the features of WsHttpBinding. Added to this, it
provides support for Duplex Message Exchange Pattern. In this pattern, a service
can communicate with the client using callbacks. The following code snippet
illustrates how you can connect to a WCF service that uses WsDualHttpBinding:

Uri serviceAddress = new Uri("http://localhost/DemoService");
WSDualHttpBinding wsd = new WSDualHttpBinding();
EndpointAddress endpointAddress = new
 EndpointAddress(serviceAddress,
 EndpointIdentity.CreateDnsIdentity("localhost"));
client = new DemoServiceClient (new InstanceContext(this), wsd,
 endpointAddress);

The	following	is	the	configuration	you	would	specify	at	the	client:

<system.serviceModel>
 <bindings>
 <wsDualHttpBinding>
 <binding name="WSDualHttpBinding_IDemoService"
 closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00"
 sendTimeout="00:00:05"
 bypassProxyOnLocal="false" transactionFlow="false"
 hostNameComparisonMode="StrongWildcard"
 maxBufferPoolSize="524288"
 maxReceivedMessageSize="65536"
 messageEncoding="Text" textEncoding="utf-8"
 useDefaultWebProxy="true">
 <readerQuotas maxDepth="32"
 maxStringContentLength="8192"
 maxArrayLength="16384"
 maxBytesPerRead="4096"
 maxNameTableCharCount="16384" />
 <reliableSession ordered="true"
 inactivityTimeout="00:10:00" />
 <security mode="Message">
 <message clientCredentialType="Windows"
 negotiateServiceCredential="true"
 algorithmSuite="Default" />
 </security>
 </binding>
 </wsDualHttpBinding>
 </bindings>
 <client>

Chapter 3

[81]

 <endpoint address="http://localhost/DemoService/"
 binding="wsDualHttpBinding"
 bindingConfiguration="WSDualHttpBinding_IDemoService"
 contract="IDemoService"
 name="WSDualHttpBinding_IDemoService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 </client>
</system.serviceModel>

WsFederationHttpBinding
WsFederationHttpBinding is a type of WS Binding that provides support for
federated security. Note that a federated service is one that requires the service
consumers to be authenticated using a security token issued by a security token
service. The WSFederationHttpBinding class and the wsFederationHttpBinding
element	in	configuration	facilitates	exposing	a	federated	service.	Note	that	
WSFederationHttpBinding supports message-level security, and you need not
select a client credential type when using WSFederationHttpBinding, because the
client credential type is always an issued token by default. You can know more on
WSFederationHttpBinding at http://msdn.microsoft.com/en-IN/library/
aa347982.aspx.

Using multiple bindings
You can also have multiple bindings for the same WCF service. The following
configuration	shows	how	you	can	configure	a	service	that	uses	multiple	bindings:

<service name="DemoService, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=null">
 <endpoint
 address="http://Joydip-PC:8080/Demo1"
 contract="IDemo, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=null"
 binding="basicHttpBinding"
 bindingConfiguration="shortTimeout"
 </endpoint>
 <endpoint
 address="http://Joydip-PC:8080/Demo2"
 contract="IDemo, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=null"
 binding="basicHttpBinding"
 bindingConfiguration="Secure"
 </endpoint>

Working with RESTful Services

[82]

</service>
<bindings>
 <basicHttpBinding
 name="shortTimeout"
 timeout="00:00:00:01"
 />
 <basicHttpBinding
 name="Secure" />
 <Security mode="Transport" />
</bindings>

You can also achieve the same behavior using the protocolMapping section in your
configuration	file,	as	follows:

<protocolMapping>
 <add scheme="http" binding="basicHttpBinding"
 bindingConfiguration="shortTimeout" />
 <add scheme="https" binding="basicHttpBinding"
 bindingConfiguration="Secure" />
</protocolMapping>
<bindings>
 <basicHttpBinding
 name="shortTimeout"
 timeout="00:00:00:01"
 />
 <basicHttpBinding
 name="Secure" />
 <Security mode="Transport" />
</bindings>

The following code snippet shows the endPoints to which a service is listening:

ServiceHost host = new ServiceHost(typeof(DemoService), new
Uri("http://localhost:9090/DemoService"));
 host.Open();
Console.WriteLine("Service started...press any key to terminate");
 ServiceEndpointCollection endpoints = host.Description.
Endpoints;
 foreach (ServiceEndpoint endpoint in endpoints)
 {
 Console.WriteLine("The service host is listening at
{0}", endpoint.Address);
 }
 Console.WriteLine("Press any key to terminate the
service.");
 Console.ReadLine();

Chapter 3

[83]

You	can	also	define	custom binding by deriving your custom binding class from
the System.ServiceModel.Channels.Binding class. The following table lists the
various bindings in WCF, their transport mode, supported message encoding type,
security mode, and their transaction support:

Binding Class Transport Message
Encoding

Security
Mode

Reliable
Messaging

Transaction
Flow

BasicHttpBinding HTTP Text None Not
Supported

Not Supported

WSHttpBinding HTTP Text Message Disabled WS-Atomic
Transactions

WSDualHttpBinding HTTP Text Message Enabled WS-Atomic
Transactions

WSFederationHttp
Binding

HTTP Text Message Disabled WS-Atomic
Transactions

NetTcpBinding TCP Binary Transport Disabled OleTransactions
NetPeerTcpBinding P2P Binary Transport Not

Supported
Not Supported

NetNamedPipes
Binding

Named
Pipes

Binary Transport Not
Supported

OleTransactions

NetMsmqBinding MSMQ Binary Message Not
Supported

Not Supported

MsmqIntegration
Binding

MSMQ Not
Supported

Transport Not
Supported

Not Supported

The following table lists the types of bindings in WCF and their supported modes:

Binding Type Transport mode Message mode
BasicHttpBinding Yes Yes
WSHttpBinding Yes Yes
WSDualHttpBinding No Yes
NetTcpBinding Yes Yes
NetNamedPipeBinding Yes No
NetMsmqBinding Yes Yes
MsmqIntegrationBinding Yes No
wsFederationHttpBinding No Yes

Working with RESTful Services

[84]

Choosing the correct binding
In essence, binding is an attribute of an endpoint,	and	you	can	use	it	to	configure	
transport	protocol,	encoding	and	security	specifications	of	a	service.	Now,	which	is	
the	binding	I	should	use	and	when?	Here's	the	rule	of	thumb:

•	 WsHttpBinding: You can use this type of binding if you need to expose your
service over the Internet

•	 basicHttpBinding: You should select this type of binding if you need to
expose your WCF service to legacy clients, such as an ASMX Web service

•	 NetTcpBinding: You can go for this type of binding if you need to support
WCF clients within an intranet

•	 netNamedPipeBinding: This type of binding is a good choice if you need to
support WCF clients on the same machine

•	 netMsmqBinding: You can select this type of binding if you need to support
disconnected queued calls

•	 wsDualHttpBinding: You can select this type of binding if you would like
to provide support for bidirectional communication between the service and
the client

Security in WCF – securing your WCF services
In this section we will discuss how we can secure our WCF services. To secure your
WCF	service	and	ensure	confidentiality	of	the	data	transmitted	over	the	wire,	you	
can bank on the concepts of authentication, authorization, and message or transport
security.	Although	authentication	denotes	identification	of	the	user's	(trying	to	
access the service) credentials, authorization denotes the resources to which an
authenticated user can have access. To maintain the integrity of messages, you can
digitally sign and encrypt your messages before they are transmitted over the wire.

Transport-level security
Transport-level security provides a point-to-point security between two endpoints,
and uses transport protocols, such as TCP, HTTP, and MSMQ. Note that the user
credentials passed in this mode of security are protocol dependent. The following
figure	shows	the	functioning	of	transport-level	security:

Chapter 3

[85]

Secure
Transport
Channel

Service
(Service
Provider)

Client
(Service

Consumer)

In this mode, platform
and the transport
channel facilitates

security

To	enable	transport	security,	use	the	security	attribute	in	the	service's	configuration	
file,	as	shown	in	the	following	code	snippet:

<bindings>
<wsHttpBinding>
<binding name="TransportSecurity">
<security mode="Transport">
<transport clientCredentialType="None"/>
</security>
</binding>
</wsHttpBinding>
</bindings>

Message-level security
Message-level security is independent of the security protocol, and here the user
credentials are encrypted before they are transmitted over the wire, along with
the message. Although transport security works faster than message security,
the	latter	is	much	more	flexible.	The	following	figure	shows	the	functioning	of	
message-level security:

Service
(Service
Provider)

Client
(Service

Consumer)

Any
Transport

In this mode, Security is
independent of the
transport protocol

Working with RESTful Services

[86]

The following code snippet illustrates how you can implement message-level
security using user credentials:

<wsHttpBinding>
<binding name = "wsHttp">
<security mode = "Message">
<message clientCredentialType = "UserName"/>
</security>
</binding>
</wsHttpBinding>

And	here	is	how	you	can	implement	the	message-level	security	using	certificates:

<bindings>
<wsHttpBinding>
<binding name="wsHttpEndpointBinding">
<security>
<message clientCredentialType="Certificate" />
</security>
</binding>
</wsHttpBinding>
</bindings>

We have had enough of discussion on WCF (this was needed anyway, because
we will be using WCF throughout this book). In the section that follows, we will
implement a RESTful service using WCF. We will also create a database that we will
be using throughout this book.

Implementing RESTful services using WCF
In this section we will explore how to create REST-based services using WCF.
To	implement	RESTful	Web	Service,	you'll	first	need	to	create	a	WCF	service,	
and then make the service RESTful using the appropriate attributes.

Note that you need to use WebHttpBinding in order to enable the RESTful behavior.

The simplest representation of a WCF RESTful service will look like the following:

[AspNetCompatibilityRequirements(RequirementsMode=AspNetCompatibility
RequirementsMode.Required)]
 public class Service : IService
 {
 public Employee[] GetEmployees()
 {
 return new Employee[]
 {

Chapter 3

[87]

 new Employee()
{EmpId=1,FirstName="Joydip",LastName="Kanjilal"},
 new Employee() {EmpId=2,FirstName="Sabita",LastName
="Kanjilal"}
 };
 }
 }

ServiceContract will look like the following:

[ServiceContract]
 public interface IService
 {
 [OperationContract]
 [WebGet(UriTemplate="/Employees",ResponseFormat=WebMessageFor
mat.X
 ml)]
 Employee[] GetEmployees();
 }

And here is DataContract for you:

[DataContract]
 public class Employee
 {
 [DataMember]
 public int EmpId { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 }

Creating the security database
In this section, we will create a database to use throughout this book. The name of
this database is Packt_Security, and it contains the following tables:

•	 User

•	 UserAuthentication

•	 UserAuthenticationType

•	 UserLoginHistory

Working with RESTful Services

[88]

I've kept the database design as simple as possible. The database design of our
Packt_Security database looks similar to the following:

The Database Design

The following is the complete script for the Security database:

CREATE TABLE [dbo].[UserMaster](
 [UserName] [nvarchar](max) NOT NULL,
 [UserID] [int] IDENTITY(1,1) NOT NULL,
 [UserEmail] [nvarchar](max) NULL,
 [Password] [nvarchar](max) NOT NULL,
 [LastLoginDate] [datetime] NULL,
 [IsOnline] [bit] NULL,
 [IsAdmin] [bit] NULL,

Chapter 3

[89]

 [IsActive] [bit] NULL,
 [DateCreated] [datetime] NULL,
 CONSTRAINT [pk_UserMaster] PRIMARY KEY CLUSTERED
(
 [UserID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =
 ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
CREATE TABLE [dbo].[UserLoginHistory](
 [UserLoginID] [int] IDENTITY(1,1) NOT NULL,
 [UserID] [int] NOT NULL,
 [LoginDateTime] [datetime] NOT NULL,
 CONSTRAINT [PK_UserLoginHistory] PRIMARY KEY CLUSTERED
(
 [UserLoginID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS =
 ON) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [dbo].[UserAuthentication](
 [UserAuthenticationID] [int] IDENTITY(1,1) NOT NULL,
 [UserAuthenticationTypeID] [int] NOT NULL,
 [UserID] [int] NOT NULL,
 [Password] [varchar](50) NOT NULL,
 [SecurityQuestion] [varchar](50) NOT NULL,
 [SecurityAnswer] [varchar](50) NOT NULL,
 CONSTRAINT [PK_UserAuthentication] PRIMARY KEY CLUSTERED
(
 [UserAuthenticationID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
CREATE TABLE [dbo].[UserAuthenticationType](
 [UserAuthenticationTypeID] [int] IDENTITY(1,1) NOT NULL,
 [UserAuthenticationTypeName] [varchar](50) NOT NULL,
 CONSTRAINT [PK_UserAuthenticationType] PRIMARY KEY CLUSTERED
(
 [UserAuthenticationTypeID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY =
OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

We will now implement a WCF service named SecurityService, which will make use
of the UserMaster table in the Packt database.

Working with RESTful Services

[90]

Creating SecurityService
To create WCF Service, follow these simple steps:

1. Open Visual Studio 2013 IDE.
2. Go to File | New | Project.
3. Select WCF Service Application from the list of the project

templates displayed.
4. Specify a name for WCF Service Application.
5. Click on OK to save.

Please refer to the following screenshot:

Creating the Service

A WCF service is comprises the following:

•	 A Service class
•	 A Service contract
•	 Hosting environment
•	 One or more endpoints

Chapter 3

[91]

A service class in WCF is the one that implements a service contract. A service contract
is typically an interface, and is decorated using the [ServiceContract] attribute. The
hosting environment denotes the environment in which a WCF service executes. A
WCF service can be hosted in IIS, or can be a self-hosted service. Clients connect to a
WCF service using the exposed endpoints. In a WCF service, you would have one or
more methods that are marked using the [OperationContract] attribute.

When you create a new WCF Service Application project, you would see a service
contract and a service class created by default. Note that the service contract is
marked using the [ServiceContract] attribute, shown as follows:

using System.Runtime.Serialization;
using System.ServiceModel;
namespace Packt.Services
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 string GetData(int value);
 [OperationContract]
 CompositeType GetDataUsingDataContract(CompositeType
composite);
 }
 [DataContract]
 public class CompositeType
 {
 bool boolValue = true;
 string stringValue = "Hello ";
 [DataMember]
 public bool BoolValue
 {
 get { return boolValue; }
 set { boolValue = value; }
 }
 [DataMember]
 public string StringValue
 {
 get { return stringValue; }
 set { stringValue = value; }
 }
 }
}

Working with RESTful Services

[92]

The	service	class	implements	the	service	contract	defined	earlier	as	follows:

using System;
namespace Packt.Services
{
 public class Service1 : IService1
 {
 public string GetData(int value)
 {
 return string.Format("You entered: {0}", value);
 }
 public CompositeType GetDataUsingDataContract(CompositeType
composite)
 {
 if (composite == null)
 {
 throw new ArgumentNullException("composite");
 }
 if (composite.BoolValue)
 {
 composite.StringValue += "Suffix";
 }
 return composite;
 }
 }
}

A service contract is an interface that is marked with the [ServiceContract]
attribute, and contains one or more methods that are exposed using the
[OperationContract] attribute. The next step is to create your service contract and
service class. A service contract can also have one or more Data Contracts. A Data
Contract is a class that holds data and is marked with the [DataContract] attribute.

Making the service RESTful
To make the SecurityService RESTful, you would need to specify the [WebGet] or
[WebInvoke] attributes in your service contract. Although the former indicates that
the WCF Service can respond to HTTP Get requests, the latter is used to indicate that
the WCF Service can respond to HTTP Post requests. Both belong to the System.
ServiceModel.Web namespace, and are actually part of the HTTP programming
model for WCF.

Chapter 3

[93]

The following code snippet illustrates how a typical [WebGet]	attribute	is	defined:

[WebGet(UriTemplate =
"/sales/getsales.xml",
 BodyStyle = WebMessageBodyStyle.Bare,
 RequestFormat = WebMessageFormat.Xml,
 ResponseFormat = WebMessageFormat.Xml)]

The [WebInvoke]	attribute	can	be	defined	so	that	your	WCF	Service	can	respond	to	
HTTP Post operations:

[GetOperationContract]
[WebInvoke(UriTemplate =
"/sales/updatesales.xml?
productcode={code}",
Method = "POST",
BodyStyle = WebMessageBodyStyle.Bare,
RequestFormat = WebMessageFormat.Xml,
ResponseFormat = WebMessageFormat.Xml)]

To make the service we created earlier in this article RESTful, just change the contract
ISecurityService, and specify the WebGet attribute, as in the following code:

[ServiceContract]
 public interface ISecurityService
 {
 [OperationContract]
 [WebGet]
 User GetUserData(Int32 userID);
 [WebInvoke]
 User PostUserData(Int32 userID);
 }

To enable the service to run in the ASP.NET compatibility mode, you should
decorate your service class with the AspNetCompatibilityRequirements attribute,
as shown in the following code:

[AspNetCompatibilityRequirements
 (RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
public class PackRESTSerivce : IRestSerivce
{
 //Code implementation goes here
}

Working with RESTful Services

[94]

Hosting Security Service
You would now need to host your service. To do this, you would use the
WebServiceHostfactory class derived from the ServiceHost class. You should
choose the WebServiceHostFactory class if the service uses WebHttpBinding. If
your service uses other types of bindings, you can simply use ServiceHostFactory
to host the service.

To host Security Service, create a Console application, and add references to the
following assemblies:

•	 System.ServiceModel
•	 System.ServiceModel.Description
•	 System.ServiceModel.Web

Next, create an instance of the WebServiceHostfactory class, and pass the base
address and the service type name as parameters:

Uri baseAddress = new Uri("http://localhost/SecurityService");

WebServiceHost host = new WebServiceHost(typeof(SecurityService),
baseAddress);

You would now need to specify the service endpoint and service debug behavior for
your RESTful service. The following is the complete source code:

using System;
using System.ServiceModel.Web;
using System.ServiceModel.Description;
using System.ServiceModel;
using Packt.Services.SecurityService;

namespace Packt.ServiceHost
{
 class Program
 {
 static void Main(string[] args)
 {
 Uri baseAddress = new Uri("http://localhost/
SecurityService");
 using (WebServiceHost host = new WebServiceHost(typeof(Sec
urityService), baseAddress))
 {
 ServiceEndpoint serviceEndpoint = host.AddServiceEnd
point(typeof(ITestService), new WebHttpBinding(), "http://localhost/
PacktServices/SecurityService.svc");

Chapter 3

[95]

 ServiceDebugBehavior serviceDebugBehavior = host.
Description.Behaviors.Find<ServiceDebugBehavior>();
 serviceDebugBehavior.HttpHelpPageEnabled = false;
 host.Open();
 Console.WriteLine("The SecurityService is ready...");
 Console.WriteLine("Press enter to terminate...");
 Console.ReadLine();
 host.Close();
 }
 }
 }
}

Summary
In this chapter, we explored WCF, WCF bindings, and WCF security. We have also
designed our security database and created a RESTful service on top of the database
we created. Now that our RESTful service has been created, we will explore how we
can consume this service in the next chapter.

Consuming RESTful Services
In this chapter, we will discuss how we can consume RESTful Services using various
clients to perform CRUD operations.

In this chapter, we will cover the following points:

•	 Understanding Ajax
•	 Introducing JSON and jQuery
•	 An overview of Language Integrated Query (LINQ)
•	 Consuming Security Service

 ° Using an ASP.NET client
 ° Using an ASP.NET MVC client
 ° Using a WPF client

Before we discuss how we can consume WCF RESTful Services, let's take a quick
look at LINQ, because we will be using it for querying data throughout this book.

Understanding AJAX
Asynchronous JavaScript and XML (AJAX) is a technology that is used to build
applications with fast and responsive user interfaces. AJAX can be used to reduce
web	page	postbacks	significantly,	thus	yielding	better	response	time.	Not	only	can	
you use AJAX to reduce page hits, but also to submit portions of your web page to
the	web	server	in	order	to	reduce	network	traffic.

Consuming RESTful Services

[98]

Note that Unobtrusive AJAX is the latest evolution of
AJAX. This version of AJAX presents a clean separation of
behavior (JavaScript), content (HTML), and presentation
(CSS), and can work even when JavaScript is turned off
in your browser. Unobtrusive AJAX helps make your
web applications work irrespective of whether JavaScript
is turned off in your web browser. It works even on a
mobile phone, screen reader, or the Web.

The technologies that make up AJAX are as follows:

•	 XMLHttpRequest: The XMLHttpRequest object is used for the exchange of
data between a server and client. Almost all modern-day browsers have an
inbuilt XMLHttpRequest object.

•	 JavaScript: This is an interpreted, prototype-based scripting language with
support for dynamic typing, which enables the client scripts to interact with
the controls in a web browser.

•	 DHTML: This is a collection of technologies that can be used to create
interactive, intuitive, and dynamic user interfaces. It is also known as
Dynamic HTML.

•	 DOM: Document Object Model (DOM) is a cross-platform, language-
independent standard API, which is used to represent objects in HTML,
XHTML, and XML documents.

•	 XML: Extensible Markup Language (XML) is a flexible	text-based	
markup language, which provides	a	standard	that	defines	the	rules	
for encoding documents.

The advantages of using AJAX are:

•	 Improved responsiveness
•	 AJAX helps us in sending small payloads
•	 Asynchronous	processing	and	reduced	network	traffic
•	 Platform and architecture neutrality

Cross-Origin Resource Sharing (CORS) is a concept that enables AJAX requests
to be posted to a domain that is different from the domain of the client. The
modern-day browsers, such as Internet Explorer 8+, Firefox 3.5+, Safari 4+, and
Chrome provide support for CORS. You can get to know more about CORS at
http://www.bennadel.com/blog/2327-Cross-Origin-Resource-Sharing-CORS-
AJAX-Requests-Between-jQuery-And-Node-js.htm.

Chapter 4

[99]

AJAX is heavily dependent on JavaScript, due to which providing multibrowser
support applications that use AJAX is a challenge. Also, usage of AJAX makes your
web	pages	difficult	to	debug	and	prone	to	security	threats	due	to	the	massive	usage	
of JavaScript.

Introducing JSON and jQuery
JavaScript Object Notation (JSON) is a lightweight text based on an open standard
that is used for exchange of data. You can use the JSON data format for serializing
and transferring data over the Web. Note that JSON has originated from JavaScript,
and is represented using two data structures—ordered lists and name/value pairs.
The	following	definition	is	provided	at www.json.org:

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate. It
is based on a subset of the JavaScript Programming Language, Standard ECMA-
262 3rd Edition - December 1999. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers of the
C-family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and
many others. These properties make JSON an ideal data-interchange language.

The following code snippet illustrates how the toJSONString() method can be
called to convert a string into its equivalent JSON representation:

var myObject = new Array();
myObject.push("Joydip Kanjilal");
myObject.push("Prakash Nagar");
myObject.push("Begumpet");
myObject.push("Hyderabad");
myObject.push("500016");
alert(myObject.toJSONString());

Note that you will get the desired output from the previous code snippet if your web
browser doesn't have native support for JSON.

jQuery is now a mature JavaScript library. It is an open source, cross-browser
JavaScript library. You can use jQuery to simplify event handling and animations.
It should be noted that jQuery was released in 2006 by John Resig. From then on,
this jQuery library has matured a lot, and is now widely popular and acceptable
worldwide. jQuery also supports extension points—you can extend this library by
attaching	a	plugin	to	it.	The	official	jQuery	website	states	the	following:

jQuery is a fast and concise JavaScript Library that simplifies HTML document
traversing, event handling, animating, and AJAX interactions for rapid web
development. jQuery is designed to change the way that you write JavaScript.

Consuming RESTful Services

[100]

The main features of jQuery are as follows:

•	 Browser compatibility: This is a feature that enables the application's user
interface to behave the same way in multiple browsers

•	 Simplified event handling model: This is a feature	that	provides	a	unified	
and	simplified	event	handling	model	based	on	the	DOM	elements,	with	a	
seamless way to register event handlers on each of the commonly used and
implemented browser events

Understanding Language Integrated
Query (LINQ)
Language Integrated Query (LINQ) is a query translation pipeline that has been
introduced as part of the C# 3.0 library. It is a language that is integrated into the
language	itself.	It	is	an	extension	of	C#,	and	provides	a	simplified	framework	for	
accessing relational data in a strongly typed and object-oriented way. You can even
use LINQ to query data from other data sources—XML, objects, and, collections.

The Line of Business (LOB) applications are data driven, and they mostly depend
on CRUD (Create, Read, Update, and Delete) operations on data. The ORMs are built
with this in mind, and provide a simple way to access your database by providing
data consistency and data integrity. With some awesome features, such as support
for anonymous methods, enumerators and yield, the lambda expression, extension
methods, and anonymous types, LINQ is basically a sort of Domain Specific
Language (DSL) for C# or VB.NET. Support for IQueryable, IEnumerable, Func
delegates, and the lambda expression in the newer versions of the .NET Framework
help in promoting this feature.

LINQ is a part of the new versions of the C# and VB.NET compilers, and it comes
with a powerful set of operators to ease the task of querying different data sources,
such as the SQL Server and XML.

A query language is one that is used to query data in our applications. Before LINQ
arrived, we used PL-SQL and T-SQL to query data from databases. However,
none of these were type safe, and they also didn't have compile-time checks to
verify whether the statements were correct at the time of compilation. In LINQ, we
have	compile-time	checks	and	type	safety;	hence,	your	queries	will	be	verified	for	
accuracy	at	the	compile	time	itself!

Chapter 4

[101]

LINQ is a new useful feature, available as part of C# 3.0, and allows you to
integrate queries right into your programs. It is an extension to the C# language
and	provides	a	simplified	framework	for	accessing	relational	data	in	a	strongly	typed	
and object-oriented manner. Apart from being type safe and the ability to check
queries at the time of compilation, you can debug your LINQ queries comfortably—a
very important feature indeed. It should be noted that Visual Studio has some
limitations for the debugging support of LINQ code. For example, "Edit and
continue" is not supported; you are not allowed to step into the predicate code in
the debug mode, and the code that gets compiled to the expression tree isn't within
the control of the debugger.

LINQ provides support for lazy loading, compiled queries, and extension methods.
Extension methods, as the name suggests, are those that enable you to provide
extensions to an existing type. These enable you to add new methods to existing
types without the need of creating new derived types. An example of an extension
method is given as follows:

public static class EmployeeExtensions
{
 public IQueryable<T> IsActive<T>(this IQueryable<T> source)
 where T : Employee
 {
 return source.Where(e => (e.JoiningDate < DateTime.Now)
 && (e.LeavingDate == DateTime.Now)
 && e.IsActive == true);
 }
}

There is a way to work around debugging the predicate
code though. What you can do is replace the predicate
code with a call to a method that contains the predicate
code, that is, by creating a wrapper method.

The LINQ library comprises the following important namespaces:

•	 System.Linq: This namespace provides a set of classes and interfaces
supporting LINQ queries

•	 System.Data.Linq: This namespace provides a set of classes and interfaces
for interacting with the relational database

Consuming RESTful Services

[102]

Data source controls
A data source control acts like a layer in between your data source and the
data-bound control. Data bound controls can be any control that actually interacts
with the end user while consuming the data services provided by the data source
control	to	which	it	is	bound.	It	defines	certain	methods	and	properties	that	perform	
data-specific	operations,	such	as	insert,	delete,	update,	and	select	over	the	data	at	
the data source while abstracting the data source. Following are the various kinds of
DataSource controls that are shipped with the ASP.NET 4.0.

ObjectDataSource
ObjectDataSource control works	with	in-memory	collections.	It	defines	properties,
such as InsertMethod, DeleteMethod, UpdateMethod, and SelectMethod, which
perform basic data storage and retrieval operations. Appropriate methods must be
created and mapped to these properties to perform the required task. When one of
these properties is used, the ObjectDataSource control actually creates the instance
and invokes the appropriate method, and it is destroyed as soon as it completes
its execution phase. ObjectDataSource is usually used in the business layer of your
application, which assists you to directly bind to the data-bound controls on the
presentation layer.

SqlDataSource
The SqlDataSource control allows you to perform standard data operations, such
as insert, update, delete, and select on the data persisting in your relation database.
The SqlDataSource control is not meant only for the SQL Server database, and can
work with any managed ADO.NET provider, which means that you can use the
SqlDataSource control with different relational data sources. The SqlDataSource
control	defines	properties,	such	as	InsertCommand, DeleteCommand, UpdateCommand,
and SelectCommand for performing standard data operations, such as insert, delete,
update, and select on the data. The command properties need appropriate queries
to be set before using them. When a data control that connects to a SqlDataSource
control is updated, the SqlDataSource control creates update parameters for all the
columns even though few columns are updated. The control also supports caching
capabilities, which assist in improving the performance of the application.

Chapter 4

[103]

SiteMapDataSource
The SiteMapDataSource control allows you to bind the site map of your website.
The site map can represent a hierarchical structure. The SiteMapDataSource
control	needs	an	appropriate	root	node	to	be	specified	in	a	given	hierarchy.	The	
SiteMapDataSource control contains properties that allow you to specify the node
locations. Primarily, the SiteMapDataSource control is used for the purpose of data
navigation, which means you cannot perform standard data operations, such as
insert, update, delete, sorting, and paging of the data.

XMLDataSource
The XmlDataSource control is another kind of DataSourceControl. Basically, it
represents the data that is in the form of XML. You can access the XML data from
the	XmlDataSource	control	by	connecting	the	control	to	a	XML	file	or	XML	data	
embedded as a string within the data source control. Caching in the XmlDataSource
control is enabled by default for increasing the performance. You can perform
standard data operations, such as insert, delete, update, and select, over the XML
data that is represented by the XmlDataSource control. However, operations like
sorting and paging are not supported by the XmlDataSource control. The control also
provides support for applying XML transformations through an XML stylesheet.

LinqDataSource
LinqDataSource control is a new control that has been introduced in ASP.NET 3.5.
It extends DataSourceControl and resides in the System.Web.UI.WebControls
namespace. It provides a new approach for binding LINQ models to the web controls
in your ASP.NET applications. The LinqDataSource control provides properties and
events	using	which	you	can	perform	operations	such	as	selecting,	filtering,	grouping,	
and ordering of a LINQ data source.

The	LinqDataSource	data	control	provides	a	flexible	mechanism	to	build	a	data	
control	with	a	wizard-based	workflow.	It	allows	you	to	perform	CRUD	operations	
on the data over a LINQ model with minimal need of writing SQL queries.

The syntax remains the same for whatever data source you use. There is no need to
define	the	queries	for	the	select,	delete,	update,	and	insert	operations	manually.

LINQ	provides	the	concept	of	a	unified	data	model;	all	you	have	to	do	is	focus	on	
your logic, because the LinqDataSource control automatically creates the necessary
commands for your needs.

Consuming RESTful Services

[104]

The following example of code shows the syntax of using the LinqDataSource control:

<asp:LinqDataSource ID=
 "ldsPurchaseOrderDetails" runat="server" ContextTypeName="
 AdventureWorksDataContext" TableName="PurchaseOrderDetails"
 Select="new (ProductID, UnitPrice, StockedQty)">
</asp:LinqDataSource>

In the previous code snippet, ContextTypeName refers to the DataContext class.
Note that a DataContext class is created automatically when you create a data
model using the LINQ to SQL designer in Visual Studio 2013 IDE. The TableName
property refers to a collection of the PurchaseOrderDetail type. The Select
property extracts a new anonymous type containing the ProductID, UnitPrice, and
StockedQty properties. In conjunction with the previous data source control, data
controls such as DetailsView, GridView, or ListView can be used to bind the data.
A simple syntax that represents the binding mechanism of a GridView's data source
to the LinqDataSource control is as follows:

<asp:GridView ID="GridView1" runat="server"
 AutoGenerateColumns="False"
 DataSourceID="ldsPurchaseOrderDetails">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
 ReadOnly="True" SortExpression="UnitPrice" />
 <asp:BoundField DataField="StockedQty" HeaderText="StockedQty"
 ReadOnly="True" SortExpression="StockedQty" />
 </Columns>
</asp:GridView>

The following example shows how the LinqDataSource control can be used for
binding the in-memory objects to a DropDownList control:

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
 ContextTypeName="Packt.Customer"
 TableName="FirstNames"></asp:LinqDataSource>
<asp:DropDownList DataSourceID="LinqDataSource1" runat="server"
 ID="DropDownList1"></asp:DropDownList>

In the Default.aspx.cs	file,	we	will	create	a	class named Customer. The class
representation is as as follows:

public class Customer
 {
 List<string> names = new List<string>();
 public Customer()
 {

Chapter 4

[105]

 names.Add("Joydip");
 names.Add("Sriram");
 names.Add("Sandeep");
 names.Add("Ramesh");
 names.Add("Sandy");
 names.Add("John");
 }
 public List<string> FirstNames { get { return names; } }
 }

The	following	figure	illustrates	the	LINQ	architecture:

CLR-complaint Languages that have support for LINQ

C# VB.NET F#

Language Integrated Query (LINQ)

LINQ to
XML

LINQ to
SQL

LINQ to
DataSets

LINQ to
Entities

LINQ to
Objects

In-memory
Objects

Data Sources that have support for Language Integrated Query (LINQ)

XML Files SQL Server
Database DataSets

Business
Entities

LINQ to XML
"LINQ to XML" maps your LINQ queries or LINQ statements to the corresponding
XML data sources. It helps you to use the LINQ standard query operators to retrieve
XML data. LINQ to XML is commonly known as XLINQ. You can also use LINQ
to query your in-memory collections and business entities (in-memory objects that
contain data related to a particular entity) seamlessly.

Consuming RESTful Services

[106]

Support for LINQ to XML is provided in the System.XML.Linq namespace. An
example that illustrates how LINQ to XML can be used to create a data document
is as follows:

public static void CreateEmployeeDataSheet()
{
 XDocument doc = new XDocument(
 new XDeclaration("1.0", "utf-8", "yes"),
 new XComment("Employee Data Sheet"),
 new XElement("employees",
 new XElement("Employee",
 new XAttribute("ID", 1),
 new XAttribute("Salaried", "false"),
 new XElement("First Name", "Joydip"),
 new XElement("Last Name", "Kanjilal"),
 new XElement("Joining Date", "02/01/2013")),
 new XElement("Employee",
 new XAttribute("ID", 1),
 new XAttribute("Salaried", "false"),
 new XElement("First Name", "Peter"),
 new XElement("Last Name", "Ward"),
 new XElement("Joining Date", "07/01/2013"))
)
);
}

LINQ to SQL
Similar to XLINQ (for querying your XML documents), you also have DLINQ which
is an implementation of LINQ that allows you to query your databases. LINQ to
SQL, or DLINQ as it is called, is actually a very simple ORM tool. It is not a complete
ORM tool, because it lacks some of the features that an ORM has. It doesn't support
state management and data generation.

To use LINQ in your programs, you must add a reference
to System.Core.dll and specify the System.Linq
namespace in the using statement.

Chapter 4

[107]

LINQ to Objects
LINQ to Objects	is	another	flavor	of	LINQ	that	is	used	to	query	in-memory	
collections of objects. Note that LINQ to Objects works with the T:System.
Collections.IEnumerable or T:System.Collections.Generic in-memory objects
or a collection of objects. Note that LINQ to Objects is implied as part of LINQ; it is a
part of the new versions of the .NET Framework. You need not specify any separate
namespaces to write your LINQ to Objects queries.

LINQ to Entities
The ADO.NET Entity Framework is a type of ORM. It is a development platform that
provides a layer of abstraction on top of the relational or logical model. In doing so, it
isolates the object model of the application from the way the data is actually stored in
the relational store. Developers can use the ADO.NET Entity Framework to program
against an object model, rather than the logical or relationship model.

This level of abstraction is achieved using the Entity Data Model (EDM)—an
extended entity relationship model. The EDM reduces the dependency of your
domain object model on the database schema of the data store in use. Developers
can	use	the	ADO.NET	Entity	Framework	to	work	with	domain-specific	properties,	
such as employee name, employee address, and contact details, without having to be
concerned with how the actual data is stored and represented in the underlying data
store. The framework can take care of the necessary translations to either retrieve
data from your data store or perform insertions, updates, and deletions.

LINQ to Entities is used to query data exposed by the EDM. LINQ to Entities enables
you to query your business objects in a strongly typed manner. You can use it to
query business objects or collections of business objects from the conceptual data
model, that is, the EDM. LINQ to Entities uses ObjectServices to query data from
the EDM.

LINQ to Entities uses the Object Services infrastructure to query data from the
conceptual model. The ObjectContext and ObjectQuery classes are two of the
most important classes that you use when working with LINQ to Entities. The
ObjectContext class is used to compose an ObjectQuery instance. The generic
ObjectQuery class actually represents an entity or collection of typed entity
instances. It should be noted that LINQ to Entities queries get internally translated
to canonical query trees. These, in turn, are converted to corresponding SQL queries
internally	in	a	predefined	form	by	your	underlying	database.

Consuming RESTful Services

[108]

The relation between LINQ to Entities and the Entity Framework is shown in the
following	figure:

LINQ to Entities

Object Services

ADO.NET Entity Data Model

ADO.NET Entity Services Layer

ADO.NET Data Providers

Entity Client

Working with service operations in LINQ
Service operations are the methods that can be called over the data services, which
have the same visibility as the entity sets. The IDataServiceConfiguration class
supports	the	user-defined	methods	to	be	exposed	over	the	data	service.	To	do	this,	
we need to set a WebGet attribute to this function and the access rule in the data
service	configuration	of	the	data	service.	

The following code snippet illustrates a DataService class:

[System.ServiceModel.ServiceBehavior(
 IncludeExceptionDetailInFaults = true)]
public class GenericCollections : DataService<AddressSet>
{
 [WebGet]
 public IQueryable<Address> GetAddresssByCity(string City)
 {
 var addressquery = from addr in
 this.CurrentDataSource.Addresses
 where addr.City.Equals(City)
 select addr;
 return addressquery;
 }

 public static void InitializeService(
 IDataServiceConfiguration config)
 {

Chapter 4

[109]

 config.UseVerboseErrors = true;
 config.SetEntitySetAccessRule("Addresses",
 EntitySetRights.AllRead);
 config.SetServiceOperationAccessRule("GetAddresssByCity",
 ServiceOperationRights.All);
 }
}

Here, we have used IQueryable<T> interface so that the method can return an
IQueryable collection of the type T, where T is a class. The [WebGet] attribute
allows the method to be accessible in the HTTP GET operations. Also, the class
attribute [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailI
nFaults = true)] on the GenericCollections class will show the stack trace just in
case you encounter any exceptions at the time of execution.

The following code snippet shows how you can query the data exposed by the
data service:

protected void Page_Load(object sender, EventArgs e)
{
 System.Data.Services.Client.DataServiceContext
 dataServiceContext = new
 DataServiceContext(new
 Uri("http://localhost:2490/GenericCollections.svc"));
 IEnumerable<Address> addresses =
 dataServiceContext.Execute<Address>(new
 Uri("http://localhost:2490/GenericCollections.svc/
 Addresses"));
 var addressquery =
 from address in addresses
 where address.City.StartsWith("S")
 select address;

 foreach (var address in addressquery)
 {
 Response.Write(string.Format("{0}
{1}
{2}

",
 address.AddressID, address.AddressLine,
 address.City));
 }
}

Consuming RESTful Services

[110]

LINQ to SQL allows you to create object models that map to the tables in the
relational database. The object-relational mapping implementation of LINQ to
SQL handles the execution strategy of the SQL queries. A database markup
language	file,	also	known	as	.dbml	file,	is	generated	by	the	Visual	Studio	IDE	when	
you drag-and-drop database tables from the solution explorer on the LINQ to SQL
design surface. When each table is dragged onto the design surface, a class is created
for each table. These classes, known as entity classes, are partial classes. They contain
a set of partial methods that allow adding custom implementations. The objects to
entity classes are known as entities. Associations are automatically created by the
LINQ to SQL designer based on the underlying table relationships.

The entity relationships between primary and foreign keys are automatically
represented as object relationships by the LINQ to SQL component. The mapping
scheme offered by LINQ to SQL provides less housekeeping tasks when tables and
columns are changed in the relational database. Only the mapping rules need to be
updated without changing the code in your application.

The AdventureWorksDataContext class (created using the LINQ to SQL Designer in
Visual Studio 2012) looks like the following code:

[System.Data.Linq.Mapping.DatabaseAttribute(
 Name="AdventureWorks")]
public partial class AdventureWorksDataContext :
 System.Data.Linq.DataContext

Note that it takes a DatabaseAttribute	class	that	specifies	
the	database	name.	This	class	also	defines	several	overloaded	
constructors that can be used for appropriate reasons.

Advantages of LINQ to SQL
The basic advantages of LINQ to SQL over other ORM tools include:

•	 Developing non-LINQ-to-SQL data-centric applications may consume
significant	time	and	effort	in	trying	to	build	custom	components	that	will	
interact with the data source. LINQ to SQL maps the tables to classes;
this helps architects to design a better n-tier architecture, thus improving
the productivity.

•	 The properties in the entity classes are mapped to the columns in the table
with the appropriate data type mapping scheme. Therefore, a compile time
check is performed, reducing the runtime errors.

•	 Another	added	benefit	for	the	developers	is	the	Intellisense	that	Visual	
Studio IDE provides while working with LINQ to SQL applications.

Chapter 4

[111]

Security Service
Here is the complete code of Security Service that we will use.

The following code snippet illustrates the ISecurityService interface. This is the
service contract.

[ServiceContract]
 public interface ISecurityService
 {
 /// <summary>
 /// GetAllUsers operation contract
 /// </summary>
 /// <returns></returns>
 [OperationContract]
 List<UserAuthentication> GetAllUsers();

 /// <summary>
 /// GetUserByID operation contract
 /// </summary>
 /// <param name="userID"></param>
 /// <returns></returns>
 [OperationContract]
 List<UserAuthentication> GetUserByID(Int32 userID);
 }

The following SecurityService class implements the ISecurityService interface:

public class SecurityService : ISecurityService
{
 /// <summary>
 /// GetAllUsers service method
 /// </summary>
 /// <returns>An instance of List<UserAuthentication></returns>
 public List<UserAuthentication> GetAllUsers()
 {
 using (RepositoryBase<SecurityEntities> repository = new
 RepositoryBase<SecurityEntities>("SecurityEntities"))
 {
 return repository.Select<UserAuthentication>().
 ToList<UserAuthentication>();
 }
 }

 /// <summary>
 /// GetUserByID service method
 /// </summary>
 /// <param name="userID">userID as Int32</param>

Consuming RESTful Services

[112]

 /// <returns>An instance of List<UserAuthentication></returns>
 public List<UserAuthentication> GetUserByID(Int32 userID)
 {
 using (RepositoryBase<SecurityEntities> repository = new
 RepositoryBase<SecurityEntities>("SecurityEntities"))
 {
 return repository.Select<UserAuthentication>().Where(x =>
x.UserID == userID).ToList<UserAuthentication>();
 }
 }
}

Consuming Security Service
In this section, we will explore how we can consume the SecurityService class
using ASP.NET and ASP.NET MVC.

ASP.NET
Microsoft's ASP.NET 4.5 is one of the most popular web technologies in recent times.
ASP.NET is a web application development framework built on top of Common
Language Runtime (CLR) which you can use to build and deploy web applications
and dynamic websites on a managed platform.

Consuming Security Service using ASP.NET 4.5
The following code snippet illustrates how you can consume the SecurityService
class from an ASP.NET client:

public partial class Default : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 BindUserDropDownList();
 BindGrid();
 }
 }

 protected void BindGrid()
 {
 SecurityService serviceObj = new SecurityService();
 var userData = serviceObj.GetAllUsers();

Chapter 4

[113]

 if (userData.Count > 0)
 {
 grdUser.DataSource = userData;
 grdUser.DataBind();
 }
 }

 protected void BindGrid(Int32 userId)
 {
 SecurityService serviceObj = new SecurityService();
 var userData = serviceObj.GetUserByID(userId);
 if (userData.Count > 0)
 {
 grdUser.DataSource = userData;
 grdUser.DataBind();
 }

 }
 protected void BindUserDropDownList()
 {
 SecurityService serviceObj = new SecurityService();
 var userData = serviceObj.GetAllUsers();
 if (userData.Count > 0)
 {
 ddlUser.DataSource = userData;
 ddlUser.DataTextField = "UserName";
 ddlUser.DataValueField = "UserID";
 ddlUser.DataBind();
 }

 ListItem li = new ListItem("All", "0");
 ddlUser.Items.Insert(0, li);
 }

 protected void ddlUser_SelectedIndexChanged(object sender,
 EventArgs e)
 {
 if (ddlUser.SelectedValue == "0")
 {
 BindGrid();
 }
 else
 {
 BindGrid(Convert.ToInt32(ddlUser.SelectedValue));
 }
 }
}

Consuming RESTful Services

[114]

When you execute the ASP.NET client application, the output looks like the
following screenshot:

The ASP.NET MVC Framework
The Model View Controller (MVC) design pattern was invented by Trygve
Reenskaug and popularized by the Ruby on Rails framework. Scott Guthrie of
Microsoft actually designed the ASP.NET MVC Framework in 2007. The ASP.NET
MVC Framework is an application framework based on the popular model view
controller design pattern. It helps reduce the cohesion among the components
by isolating the concerns in your application.

Usage	of	the	MVC	design	pattern	provides	the	following	benefits:

•	 Makes your code easier to test, maintain, and deploy
•	 Facilitates code re-use, maintainability, and testability

The MVC design pattern is comprised of the following major components:

•	 The Model: It is the Data Access layer, and represents the business logic
components and the application's data

•	 The View: It is the User Interface or the or the application
•	 The Controller: It is the Business Logic layer and it handles user interactions

and updates the model as and when required

The	most	important	benefit	of	the	MVC	design	pattern	is	its	ability	to	promote	
a clean separation of concerns. In doing so, applications that are designed on the
MVC pattern are easier to test and maintain.

Chapter 4

[115]

You can use the MVC design pattern to facilitate code re-use, reduce cohesion among
the application's components, and facilitate easier maintenance and testing of the
application's components. The ASP.NET MVC Framework is designed based on the
MVC Framework, and promises to be the technology of choice for designing web
applications in ASP.NET, primarily due to its improved features over the traditional
ASP.NET runtime. You can get to know more about the ASP.NET MVC Framework
and MVC design pattern from my book titled ASP.NET 4.0 Programming by Mc-Graw
Hill Publishing at http://www.amazon.com/ASP-NET-4-0-Programming-Joydip-
Kanjilal/dp/0071604103.

Consuming Security Service using ASP.NET MVC
The HomeController class extends the controller class of the ASP.NET MVC
Framework. It contains a collection of action methods.

We create an instance of the SecurityService class in the HomeController class.
In the Index() action method, the GetAllUsers() method is called on an instance
of UserAuthenticationModel. The userList() method returns a list of users as
a Json type.

The following code illustrates the controller class for the ASP.NET MVC client:

public class HomeController : Controller
{
 SecurityService serviceObj = new SecurityService();

 public ActionResult Index()
 {
 UserAuthenticationModel userModel = new
 UserAuthenticationModel();
 ViewBag.ListUser = new
 SelectList(serviceObj.GetAllUsers().ToList(), "UserID",
 "UserName");
 return View(userModel);
 }
 private IQueryable<T> SortIQueryable<T>(IQueryable<T> data,
 string fieldName, string sortOrder)
 {
 if (string.IsNullOrWhiteSpace(fieldName)) return data;
 if (string.IsNullOrWhiteSpace(sortOrder)) return data;

 var param = Expression.Parameter(typeof(T), "i");
 Expression conversion =
 Expression.Convert(Expression.Property(param, fieldName),
 typeof(object));

Consuming RESTful Services

[116]

 var mySortExpression = Expression.Lambda<Func<T,
 object>>(conversion, param);

 return (sortOrder == "desc") ?
 data.OrderByDescending(mySortExpression)
 : data.OrderBy(mySortExpression);
 }

 public JsonResult UserList(string id, string sidx = "UserId",
 string sord = "asc", int page = 1, int rows = 10)
 {
 var userData = serviceObj.GetAllUsers().AsQueryable();
 if (id != null)
 {
 userData = serviceObj.GetUserByID(
 Convert.ToInt32(id)).AsQueryable();
 }
 var sortedDept = SortIQueryable<DataAccess.
 UserAuthentication>(userData, sidx, sord);
 var totalRecords = userData.Count();
 var totalPages = (int)Math.Ceiling((double)totalRecords /
 (double)rows);
 var data = (from s in userData
 select new
 {
 id = s.UserID,
 cell = new object[] { s.UserID, s.UserName, s.UserEmail, }
 }).ToArray();

 var jsonData = new
 {
 total = totalPages,
 page = page,
 records = totalRecords,
 rows = data.Skip((page - 1) * rows).Take(rows)
 };
 return Json(jsonData);
 }
}

Chapter 4

[117]

When the ASP.NET MVC client application is executed, the output will look like the
following screenshot:

Asynchronous operations
Asynchronous operations help execute operations asynchronously and, hence,
leverage	the	flexibility	of	the	parallel	processors	of	today.	Async	operations	are	
performed in .NET 4.5 using the Task object in .NET Framework 4.5 and MVC 4.
The asynchronous programming model of .NET 4.5 is built on top of the existing
asynchronous programming model of NET 4.0, and enables you to write methods
that return objects of the Task type. In essence, the await and async keywords
together with the Task object make it easier for you to write asynchronous code in
.NET 4.5. This model is also known as Task-based Asynchronous Pattern (TAP).
An example of this pattern is as follows:

public void Page_Load(object sender, EventArgs e)
{
 RegisterAsyncTask(new PageAsyncTask(LoadData));
}

public async Task LoadSomeData()
{
 var employees = Client.DownloadStringTaskAsync("api/employees");
 var departments = Client.DownloadStringTaskAsync(
 "api/departments");
 var cities = Client.DownloadStringTaskAsync("api/cities");

Consuming RESTful Services

[118]

 await Task.WhenAll(employees, departments, cities);
 var employeeData = Newtonsoft.Json.JsonConvert.
 DeserializeObject<List<Contact>>(await employees);
 var departmentData = Newtonsoft.Json.JsonConvert.
 DeserializeObject<string>(await departments);
 var cityData = Newtonsoft.Json.JsonConvert.
 DeserializeObject<string>(await cities);
 listEmployees.DataSource = employees;
 listEmployees.DataBind();
}

You can also implement asynchronous operations in the ASP.NET MVC Framework
using the Async controller. To do this, you should extend your controllers from the
abstract AsyncController class.

The following code shows how the AsyncController class looks:

public abstract class AsyncController : Controller,
 IAsyncManagerContainer, IAsyncController, IController
{
 protected AsyncController();
 public AsyncManager AsyncManager { get; }
 protected virtual IAsyncResult BeginExecute(RequestContext
 requestContext, AsyncCallback callback, object state);
 protected virtual IAsyncResult BeginExecuteCore(AsyncCallback
 callback, object state);
 protected override IActionInvoker CreateActionInvoker();
 protected virtual void EndExecute(IAsyncResult asyncResult);
 protected virtual void EndExecuteCore(IAsyncResult asyncResult);
}

Note that the AsyncManager class belongs to the
System.Web.Mvc.Async namespace, and provides the
necessary operations for the AsyncController class.

You can write your controller by deriving your custom controller class from the
AsyncController class as shown in the following code:

public class HomeController : AsyncController
{
 //Usual code
}

Chapter 4

[119]

The important point to note here is that the name of an asynchronous controller class
should	have	the	"Controller"	suffix.	So,	the	Home controller class can be named
HomeController, but not "Home" or "ControllerHome". Another interesting point to
note here is that you cannot have the sync and async versions of of the same method
residing in the same controller.

Therefore, you cannot have both the Index() and IndexAsync() methods residing
in the Index controller class. If you do this, an AmbiguousMatchException exception
will be thrown.

The following code snippet illustrates a synchronous controller and its
action method:

public class ProductsController: Controller
{
 public ActionResult GetProducts(int productCode)
 {
 //Usual code
 }
}

The following code snippet illustrates an asynchronous controller and its
action method:

public class ProductsController: AsyncController
{
 public ActionResult GetProducts(int productCode)
 {
 //Usual code
 }
}

An async action comprises of a pair of methods that should have the "Async" and
"Completed"	suffixes,	respectively.	The	following	code	snippet	illustrates	this:

public class HomeController : AsyncController
{
 public void GetProductsAsync()
 {
 //Some code
 }

 public ActionResult GetProductsCompleted(IList<Product> items)
 {
 //Some code
 }
}

Consuming RESTful Services

[120]

Note that although these APIs are still supported, using
the new "async/await" keywords and the Task object
is a recommended way of implementing asynchronous
behavior in your ASP.NET 4.5 applications.

When you define	the	routes	to	handle	a request asynchronously, you should use the
AsyncMvcRouteHandler and not the usual MvcRouteHandler, as in the following
code snippet:

routes.Add(new Route("Default.aspx", new AsyncMvcRouteHandler())
{
 Defaults = new RouteValueDictionary(new { controller = "Home",
 action = "Index", id = "" }),
});

Understanding Windows Presentation
Foundation
Windows Presentation Foundation (WPF), formerly code-named "Avalon," is one
of the most widely popular components added to the new versions of the Microsoft
.NET Framework for designing and developing windows applications, which can
provide visually stunning and rich user interfaces.

The following code snippet illustrates how a typical XAML code for a WPF TextBox
control looks:

<TextBox SpellCheck.IsEnabled="True" Language="en-US" />

The following code snippet can be used to validate the user input and check the
spellings	based	on	the	locale	we	specified,	that	is,	US.

protected override void OnTextInput(TextCompositionEventArgs e)
{
 string data = Text.Remove(SelectionStart,
 SelectionLength) + e.Text;

 if (_regex != null && !_regex.IsMatch(data))
 {
 e.Handled = true;
 }
 else
 {
 base.OnTextInput(e);
 }
}

Chapter 4

[121]

WPF is a graphical subsystem available as part of the latest versions of the .NET
Framework. Incidentally, WPF was introduced with the .NET Framework 3.0.
WPF enables you to create applications that are rich in UI look and feel, and design
applications that are rich in User Interface, media, vector graphics, and so on. XAML
provides a declarative touch to WPF. It should be noted that XAML, however, is not
specific	to	WPF	or	.NET,	and	the	standard	is	in	use	by	many	other	technologies.

Consuming Security Service using WPF
The following code illustrates the XAML markup for the WPF client that would
consume the SecurityService class. I've kept it as simple as possible—with just one
Grid control to display user data.

<Grid>
 <DataGrid Name="dataGrid1" AutoGenerateColumns="False" >
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding UserID}" Header=
 "User ID" IsReadOnly="True" x:Name="dgrUserID">
 </DataGridTextColumn>
 <DataGridTextColumn Binding="{Binding UserName}"
 Header="User Name" IsReadOnly="True" x:Name="dgrUserName">
 </DataGridTextColumn>
 <DataGridTextColumn Binding="{Binding UserEmail}"
 Header="User Email" IsReadOnly="True"
 x:Name="dgrUserEmail">
 </DataGridTextColumn>

 </DataGrid.Columns>
 </DataGrid>
</Grid>

Please refer to the MainWindow class given in the following code snippet. The
BindData() method will be used to bind data to the WPF DataGrid class using
the SecurityService.

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void Window_Loaded_1(object sender, RoutedEventArgs e)
 {

Consuming RESTful Services

[122]

 BindGrid();
 }

 protected void BindGrid()
 {
 SecurityService serviceObj = new SecurityService();
 var userData = serviceObj.GetAllUsers();
 if (userData.Count > 0)
 {
 dataGrid1.ItemsSource = userData.ToList();
 }
 }
}

The	following	figure	illustrates	how	the	output	of	the	above	program	would	look:

References
•	 http://www.json.org/

•	 http://json.codeplex.com/

•	 http://weblogs.asp.net/scottgu/archive/2007/10/14/aspnet-mvc-
framework.aspx

Summary
In this chapter, we explored how we can consume the SecurityService class
using various clients, that is, theASP.NET, ASP.NET MVC, and WPF clients. In
the next chapter, we will explore the new features of ASP.NET 4.5, and also build
applications using the ASP.NET Web API.

Working with ASP.NET 4.5
In this chapter, we will discuss the new features in ASP.NET 4.5 and explore how
we can work with the ASP.NET Web API. The ASP.NET Web API is a lightweight
alternative approach like WCF, and uses HTTP as the application protocol.

In this chapter, we will cover the following points:

•	 Working with the OData protocol
•	 New features in Microsoft .NET Framework 4.5
•	 New features and enhancements in ASP.NET 4.5
•	 Working with the ASP.NET Web API

Working with the OData protocol
The Open Data protocol (OData) is a protocol that is built on web standards, such as
HTTP, Atom, and JSON, and standardizes how the data is exposed and consumed.
It is a data access protocol that provides a uniform way of performing CRUD
operations on the data. It is used to expose and access information from different
data	sources;	that	is,	relational	databases,	filesystems,	content	management	systems,	
and so on. OData is a standardized protocol that builds on top of core protocols,
such as HTTP and architecture paradigms, such as REST. Like RSS, Atom is a way
to expose feeds. Note that AtomPub makes use of HTTP verbs such as GET, POST,
PUT, and DELETE, to facilitate publishing of data.

Working with ASP.NET 4.5

[124]

Working with the ASP.NET Web API and OData
In this section, we will explore how we can work with the ASP.NET Web API
and OData. To install the Web API OData Controller template, right-click on
the Controllers folder in the solution explorer window, and then select New
Scaffolded Item. Next, select Web API 2 OData Controller with actions using the
Entity Framework.

To work with the ASP.NET Web API and OData follow these steps:

1. Open the Visual Studio 2013 IDE.
2. Create a new project and save it with a name.
3. In the solution explorer, right-click and select New Item.
4. Create an Entity Data Model.
5. Configure	the	OData	route.
6. Implementing the OData controller.

Note that if you would like to expose an endpoint that
adheres to the OData protocol, you should extend your
Controller class from ODataController. On the
contrary, if you would like to have a REST endpoint,
you should extend your Controller class from
ApiController. Also, you can host multiple OData
endpoints vis-a-vis your non-OData endpoints.

The following code snippet illustrates how the EmployeeController class
would look:

public class EmployeeController : ODataController
{
 List<Employee> _employees = DataStore.Employees;

 [Queryable]
 public IQueryable<Employee> GetEmployees()
 {
 return _employees.AsQueryable();
 }

 public Employee GetEmployee([FromODataUri] int employeeID)
 {
 return _employees[employeeID];
 }
}

Chapter 5

[125]

The [Queryable] attribute facilitates OData query syntax on a particular action. You
can also derive your controller class from EntitySetController—a base class for
exposing entity sets.

New features in the .NET Framework 4.x
In this section, we will take a look at the striking features in Microsoft .NET
Framework 4.x.

Supporting asynchronous programming
in .NET Framework 4.x
Asynchronous programming is a feature in Microsoft .NET Framework 4.5 that can
enhance the overall responsiveness of your application. Support for asynchronous
programming is inbuilt in Visual Studio 2012. Asynchronous tasks help write
applications that are more responsive and provide a better user experience.

Method calls can either be synchronous or asynchronous. In a synchronous method
call, the method is completed in its entirety by the currently executing thread. In
an asynchronous method call on the other hand, the currently executing thread
begins execution of the method and returns immediately—it doesn't block the
user interface in any way. You can execute synchronous threads in Microsoft .NET
Framework using the System.Threading.Thread namespace. Synchronous threads
are those that are executed one after another, that is, in a sequence. In a synchronous
operation, two or more threads run in a same context, and therefore the execution of
one may block the other.

The support for asynchronous programming is made available through the
keywords async and await. The usage of the keywords async and await enable you
to implement asynchronous programming seamlessly—no callbacks, IAsyncResult,
and so on. You can use these two keywords to create asynchronous methods. Note
that the asynchronous methods can have three possible return types. These are:

•	 Task<TResult>

•	 Task

•	 void

When await keyword is called against that particular task, the method of that task is
immediately suspended, and the method resumes its execution once the execution of
the task is complete.

Working with ASP.NET 4.5

[126]

Here is a code snippet that illustrates how asynchronous programming can be
implemented in Microsoft .NET Framework 4.5:

async Task<int> CallWebPagesAsynchronously()
{
 HttpClient client = new HttpClient();
 Task<string> strTask =
 client.GetStringAsync("http://joydipkanjilal.com");
 DoSomeWork();
 string content = await strTask;
 return content.Length;
}

Introducing the new features in
ASP.NET 4.5
ASP.NET is a server-side technology that runs on top of the managed environment
of .NET Framework. You can use ASP.NET to build and deploy web applications
and develop dynamic websites. Microsoft .NET Framework is a managed platform
used for designing and developing applications that are portable, scalable
and robust. Microsoft's ASP.NET stands out as one of the most successful web
application development frameworks ever. Over the years, it has matured enough to
be the choice of web developers as a framework that you can use to develop highly
scalable, high-performance web applications that leverage the features of a managed
environment. ASP.NET 4.5 is shipped as part of Visual Studio 2012, and contains
many new and interesting features.

Enhanced state management features
ASP.NET 4.5 provides support for improved state management features. The
ViewStateMode property gives you better control over ViewState. Note that this
property can have one of three values: Enabled, Disabled, or Inherit. You have another
new property introduced, named ClientIDMode. You can use this property to set the
ClientID for server controls and use it from the client side. This property can have one
of four values: Static, Predictable, Legacy, or Inherit.

Chapter 5

[127]

The following script code illustrates how you can display the ClientID for a control
using JavaScript:

<script type="text/javascript">
function DisplayClientID()
{
 alert('<%= myButtonControl.ClientID %>');
}
</script>

Here's an example that shows how you can use the ClientIDMode property:

<asp:Panel ID="pnlFirst" runat="server" ClientIDMode="Static">

The following code snippet illustrates how the Predictable mode is used:

<asp:Content ID="contentObj"
 ContentPlaceHolderID="contentPlaceHolderObject" Runat="server">
 <asp:Panel ID="ParentPanel" runat="server"
 ClientIDMode="Static">
 <asp:Panel ID="ChildPanel" runat="server"
 ClientIDMode="Predictable">
 <asp:Button ID="btnSubmit" runat="server"/>
 </asp:Panel>
 </asp:Panel>
</asp:Content>

If ClientIDMode for a control is set to Inherit, the control inherits the ClientIDMode
setting of its parent control. Here is an example:

<asp:Content ID="contentObj"
 ContentPlaceHolderID="contentPlaceHolderObj"
Runat="Server">
 <asp:Panel ID="PanelParent" runat="server">
 <asp:Panel ID="PanelChild" runat="server"
 ClientIDMode="Static">
 <asp:Button ID="btnSubmit" runat="server"
 ClientIDMode="Inherit" />
 </asp:Panel>
 </asp:Panel>
</asp:Content>

Working with ASP.NET 4.5

[128]

Performance monitoring
ASP.NET 4.5 enables you to monitor resource utilization. To enable this resource
monitoring,	all	you	need	to	do	is	to	use	the	following	configuration	in	the	
aspnet.config	file:

<configuration>
<runtime>
<appDomainResourceMonitoring enabled="true"/>
</runtime>
</configuration>

Extensible Output Caching
With ASP.NET 4.x, Output Caching has improved a lot. Output Caching is a feature
that enables you to store the output of your ASP.NET web pages in cache memory
so that subsequent requests to the same web page can be fetched from the memory
cache. By doing this, the application's performance can be improved to a great extent
for web pages that contain relatively stale data.

With ASP.NET 4.x, you have a feature named Extensible Output Caching that you
can use to add extensibility points to Output Caching. You can now also manage and
configure	one	or	more	custom	Output	Cache	providers.	Here	are	the	Cache	Storages	
for which the ASP.NET 4.x Cache API provides support:

•	 Disk-based Output Caches
•	 Custom object caches
•	 Distributed object caches
•	 Cloud-based object caches

To	configure	your	custom	Output	Cache	provider,	all	you	need	to	do	is	to	specify	the	
following in the application's web.config	file:

<caching>
<outputCache defaultProvider="Packt.CustomCacheProvider">
<providers>
<add name="DiskCache"
type="Packt.CustomCacheProvider, Packt"/>
</providers>
</outputCache>
</caching>

Chapter 5

[129]

Search Engine Optimization (SEO)
ASP.NET 4.x provides support for SEO. The System.Web.Routing namespace
provides support for routing through the usage of the RouteTable and the
PageRouteHandler classes. You can also achieve SEO using the Page Meta
Keyword and Description features available in ASP.NET 4.5, as given in the
following code snippet:

protected void Page_Load(object sender, EventArgs e)
{
 this.Page.Title = "Packt";
 this.Page.MetaKeywords = "Books";
 this.Page.MetaDescription = "Packt Books";
}

Other notable enhancements
In this section, we will highlight some other notable enhancements in ASP.NET 4.5:

•	 Web Sockets: ASP.NET 4.5 includes full support for the Web Sockets.
HTML5 standard is available with ASP.NET 4.5 running on IIS 8.0 via
the SignalR library. This allows you to add real-time web functionality
to applications easily.

•	 Authentication: With ASP.NET 4.5, you now have a universal provider
(DefaultMembershipProvider). Also, the OAuth protocol is there. OAuth is
an open standard for authorizing clients to enable access to server resources
on behalf of a resource owner.

•	 Web publishing: In ASP.NET 4.5, Web publishing feature has been
enhanced—you	can	now	compare	local	and	remotes	files	and	publish	only	
the	files	you	need.

•	 Web API: This API is included with ASP.NET 4.5 and its REST-based
features for developing and building RESTful applications. Also, the Web
API now includes extensive OData support.

•	 Leveraging IIS features: ASP.NET 4.5 enables you to leverage the new
features available in Internet Information Server (IIS) 8.0. These include
prefetching and application initialization like an application ping at startup.

Working with ASP.NET 4.5

[130]

Working with the ASP.NET Web API
The ASP.NET Web API is a framework that you can make use of to build web
services that use HTTP as the protocol. You can use the ASP.NET Web API to return
data based on the data requested by the client; that is, you can return JSON or XML
as the format of the data.

Presentation Layer

Business Logic Layer

Data Access Layer

Database

Layers of an application

The ASP.NET Framework runs on top of the managed environment of the
.NET Framework.

ASP.NET Framework

.NET Framework

ASP.NET MVC ASP.NET Web Forms ASP.NET Web Pages

Chapter 5

[131]

The Model, View, and Controller (MVC) architectural pattern is used to separate the
concerns of an application to facilitate testing, ease the process of maintenance of the
application's code, and to provide better support for change. The model represents
the application's data and the business objects; the view is the presentation layer
component, and the controller binds the Model and the View together. The following
figure	illustrates	the	components	of	Model	View	architecture:

Model

View Controller

State Change

Change
Notification

Selects View

The MVC architecture

The ASP.NET Web API architecture
The ASP.NET Web API is a lightweight web-based architecture that uses HTTP as
the application protocol. Routing in the ASP.NET Web API works a bit differently
compared to the way it works in ASP.NET MVC. The basic difference between
routing in MVC and routing in a Web API is that Web API uses the HTTP method,
and not the URI path, to select the action. The Web API Framework uses a routing
table to determine which action is to be invoked for a particular request. You need
to specify the routing parameters in the WebApiConfig.cs	file	that	resides	in	the	
App_Start directory.

Here's	an	example	that	shows	how	routing	is	configured:

routes.MapHttpRoute(
 name: "Packt API Default",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

The	following	code	snippet	illustrates	how	routing	is	configured	by	action	names:

routes.MapHttpRoute(
 name: "PacktActionApi",
 routeTemplate: "api/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

Working with ASP.NET 4.5

[132]

The ASP.NET Web API generates structured data such as JSON and XML as
responses. It can route the incoming requests to the actions based on HTTP verbs
and not only action names. Also, the ASP.NET Web API can be hosted outside of
the ASP.NET runtime environment and the IIS Web Server context.

Routing in the ASP.NET Web API
Routing in the ASP.NET Web API is very much the same as in the ASP.NET MVC.
The ASP.NET Web API routes URLs to a controller. Then, the control is handed to
the action that corresponds to the HTTP verb of the request message. Note that the
default route template for an ASP.NET Web API project is {controller}/{id}—
here the {id} parameter is optional. Also, the ASP.NET Web API route templates
may optionally include an {action} parameter. It should be noted that unlike the
ASP.NET MVC, URLs in the ASP.NET Web API cannot contain complex types. It
should also be noted that complex types must be present in the HTTP message body,
and that there can be one, and only one, complex type in the HTTP message body.

Note that the ASP.NET MVC and the ASP.NET Web API are
two distinctly separate frameworks which adhere to some
common architectural patterns.

In the ASP.NET Web API framework, the controller handles all HTTP requests.
The controller comprises a collection of action methods—an incoming request to
the Web API framework, the request is routed to the appropriate action. Now, the
framework uses a routing table to determine the action method to be invoked when
a request is received.

Here is an example:

routes.MapHttpRoute(
 name: "Packt Web API",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

Refer to the following UserController class. Note that it extends the
BaseApiController class we designed earlier in this chapter:

public class UserController <UserAuthentication>: BaseApiController<Us
erAuthentication>
{
 public void GetAllUsers() { }
 public IEnumerable<User> GetUserById(int id) { }
 public HttpResponseMessage DeleteUser(int id){ }
}

Chapter 5

[133]

The following table illustrates the HTTP method and the corresponding URI,
Actions, and so on:

HTTP Method URI Action Parameter
GET api/users GetAllUsers None
GET api/users/1 GetUserByID 1
POST api/users
DELETE api/users/3 DeleteUser 3

The Web API Framework matches the segments in the URI path to the template. The
following steps are performed:

1. The URI is matched to a route template.
2. The respective controller is selected.
3. The respective action is selected.

The IHttpControllerSelector.SelectController method selects the controller,
takes an HttpRequestMessage instance, and returns an HttpControllerDescriptor.
After the controller has been selected, the Web API Framework selects the action by
invoking the IHttpActionSelector.SelectAction method. This method in turn
accepts HttpControllerContext and returns HttpActionDescriptor. You can also
explicitly specify the HTTP method for an action by decorating the action method
using the HttpGet, HttpPut, HttpPost, or HttpDelete attributes. Here is an example:

public class UsersController : ApiController
{
 [HttpGet]
 public User FindUser(id) {}
}

You can also use the AcceptVerbs attribute to enable HTTP methods other than GET,
PUT, POST, and DELETE. Here is an example:

public class UsersController : ApiController
{
 [AcceptVerbs("GET", "HEAD")]
 public User FindUser(id) { }
}

Working with ASP.NET 4.5

[134]

You	can	also	define	route	by	an	action	name.	Here	is	an	example:

routes.MapHttpRoute(
 name: "PacktActionApi",
 routeTemplate: "api/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional }
);

You can also override the action name by using the ActionName attribute.
The following code snippet illustrates two actions: one that supports GET and
the other that supports POST:

public class UsersController : ApiController
{
 [HttpGet]
 [ActionName("Token")]
 public HttpResponseMessage GetToken(int userId);

 [HttpPost]
 [ActionName("Token")]
 public void AddNewToken(int userId);
}

Implementing the ASP.NET Web API for the
Security database
To implement the ASP.NET Web API, you need to create a class that derives from
the ApiController	class.	Now,	the	methods	defined	in	the	Web	API	controller	map	
to the corresponding HTTP methods. You should ensure that the actions you would
like	to	implement	in	your	Web	API	Controller	class	is	prefixed	with	the	correct	
request type (GET, POST, PUT, and DELETE).

Chapter 5

[135]

To create an ASP.NET Web API for our Security database, follow these steps:

1. Right-click on the solution explorer window.
2. Select Add New Project.

Creating a new ASP.NET Web API project

3. Select ASP.NET MVC 4 Web Application from the list of the templates
under the Web	category	as	shown	in	the	previous	figure.

4. Specify a name for the project, and click on OK.

Working with ASP.NET 4.5

[136]

5. Select Web API as the Project Template, as shown in the following screenshot:

Selecting the project template

6. Ensure that View engine selected is Razor. Click on OK when done.

Here is how the HomeController class looks:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace ASP.NET.MVC.WebAPI.Controllers
{

Chapter 5

[137]

 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }
 }
}

Here is how the ValuesController class looks:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
namespace ASP.NET.MVC.WebAPI.Controllers
{
 public class ValuesController : ApiController
 {
 // GET api/values
 public IEnumerable<string> Get()
 {
 return new string[] { "value1", "value2" };
 }

 // GET api/values/5
 public string Get(int id)
 {
 return "value";
 }

 // POST api/values
 public void Post([FromBody]string value)
 {
 }

 // PUT api/values/5
 public void Put(int id, [FromBody]string value)
 {
 }

 // DELETE api/values/5
 public void Delete(int id)
 {
 }
 }
}

Working with ASP.NET 4.5

[138]

Now, when you execute the application, here is how the output looks:

The output in the web browser

Let's create an entity class named Employee, and use it in the ValuesController
class. I've kept the Employee class as simple as possible:

public class Employee
 {
 public Int32 ID { get; set; }
 public String FirstName { get; set; }
 public String LastName { get; set; }
 }

We will now create an array of the Employee class and store some data in it using the
constructor. Note that an ASP.NET Web API controller derives from ApiController.
Here is how the updated ValuesController class looks:

public class ValuesController : ApiController
 {
 Employee[] employeeArray = null;
 public ValuesController()
 {
 employeeArray = new Employee[] {
 new Employee {ID = 1, FirstName = "Joydip",
 LastName = "Kanjilal"},
 new Employee {ID = 2, FirstName = "Steve", LastName
 = "Smith"},
 new Employee {ID = 3, FirstName = "Michael",
 LastName = "Stevens"}
 };
 }
 public IEnumerable<Employee> Get()
 {
 return employeeArray;
 }

Chapter 5

[139]

 public string GetFullName(int id)
 {
 return employeeArray[id].FirstName + " " +
 employeeArray[id].LastName;
 }
 }

Let's now see how the output looks when we execute the application and invoke
the Web API.

The ValuesController class in execution

Now, let's invoke the Web API controller and pass the Employee ID as the parameter.
Here is how the output looks like:

Retrieving a particular record

Working with ASP.NET 4.5

[140]

We will now design a BaseApiController class—a class that would serve as base
for all controller classes. Here is how the initial version of this class would look:

public class BaseApiController<T> : ApiController where T : class
{
 BaseRepository<SecurityEntities> repository = null;
 public BaseApiController()
 {
 repository = new
 BaseRepository<SecurityEntities>
 ("SecurityEntities");
 }
}

Here is how the initial version of the BaseRepository class looks:

public class BaseRepository<TContext> : IDisposable
 where TContext : DbContext, IObjectContextAdapter, new()
{
 private TContext context;

 private BaseRepository()
 {
 }
 public BaseRepository(string connectionStringName)
 {
 context = new TContext();
 context.Database.Connection.ConnectionString =
 "data source=Joydip;initial catalog=SecurityDB;
 integrated security=True;";
 }
}

Here's the complete implementation of the BaseRepository class:

using System;
using System.Linq;
using System.Data.Entity;
using System.Linq.Expressions;
using System.Reflection;
using System.Data.Entity.Infrastructure;
using System.Data;
namespace DataAccess
{
 public class BaseRepository<TContext> : IDisposable
 where TContext : DbContext, IObjectContextAdapter, new()

Chapter 5

[141]

 {
 private TContext dataContext;
 private BaseRepository()
 {
 }
 public BaseRepository(string connectionStringName)
 {
 dataContext = new TContext();
 dataContext.Database.Connection.ConnectionString =
 "datasource=Joydip;initial catalog=SecurityDB;
 integrated security=True;";
 }
 public virtual Int32 CreateData<T>(T TObject) where T :
 class
 {
 var dbSetInstance = dataContext.Set<T>().Add(TObject);
 return SaveChanges();
 }
 public virtual Int32 RemoveData<T>(T instance) where T :
 class
 {
 dataContext.Set<T>().Remove(instance);
 return SaveChanges();
 }
 public virtual Int32 EditData<T>(T instance) where T :
 class
 {
 var dbEntityEntry = dataContext.Entry(instance);
 dataContext.Set<T>().Attach(instance);
 dbEntityEntry.State = EntityState.Modified;
 return SaveChanges();
 }
 private Int32 SaveChanges()
 {
 return dataContext.SaveChanges();
 }
 public void Dispose()
 {
 if (dataContext != null)
 {
 dataContext.Dispose();
 dataContext = null;
 }
 }
 }
}

Working with ASP.NET 4.5

[142]

Here is how the IBaseApiController interface looks:

using System;
namespace ASP.NET.MVC.WebAPI.Models
{
 /// <summary>
 /// IBaseApiController interface
 /// </summary>
 public interface IBaseApiController : IDisposable
 {
 int ID { get; set; }
 }
}

The BaseApiController class extends the ApiController class and implements the
IBaseApiController interface:

using System;
using System.Collections.Generic;
using System.Web.Http;
using ASP.NET.MVC.WebAPI.Models;
using DataAccess;
namespace ASP.NET.MVC.WebAPI.Helpers
{
 public class BaseApiController<T> : ApiController where T :
 class, IBaseApiController
 {
 BaseRepository<SecurityEntities> repository = null;
 protected string[] includesArray { get; set; }
 /// <summary>
 /// Default Contructor that initializes the instance of
 BaseRepository
 /// </summary>
 public BaseApiController()
 {
 repository = new BaseRepository
 <SecurityEntities>("SecurityEntities");
 }
 /// <summary>
 /// Get method to retrieve entity data based on the
 generic type supplied
 /// </summary>
 /// <returns></returns>
 public virtual IEnumerable<T> Get()
 {

Chapter 5

[143]

 return repository.GetData<T>(includesArray);
 }
 /// <summary>
 /// Get method to retrieve entity data based on the id of
 the entity
 /// </summary>
 /// <param name="id"></param>
 /// <returns></returns>
 public virtual T Get(Int32 id)
 {
 return repository.SearchData<T>(t => t.ID == id,
 includesArray);
 }
 /// <summary>
 /// Post method - edits data
 /// </summary>
 /// <param name="value"></param>
 /// <returns></returns>
 public virtual Int32 Post([FromBody]T value)
 {
 return repository.EditData<T>(value);
 }
 /// <summary>
 /// Put method - creates / inserts new entity
 /// </summary>
 /// <param name="value"></param>
 /// <returns></returns>
 public virtual Int32 Put([FromBody]T value)
 {
 return repository.CreateData<T>(value);
 }
 /// <summary>
 /// Delete method - deletes an existing entity
 /// </summary>
 /// <param name="value"></param>
 /// <returns></returns>
 public virtual Int32 Delete([FromBody]T value)
 {
 return repository.RemoveData<T>(value);
 }
 }
}

Working with ASP.NET 4.5

[144]

In a standard ASP.NET MVC project, the route configuration	is	defined	in	the	
Global.asx.cs	file.	On	the	contrary,	in	a	standard	ASP.NET	Web	API	project	
you would have a RouteConfig class and a WebApiConfig class inside the
Application_Start folder.

RouteConfig and WebApiConfig in ASP.NET Web API

Chapter 5

[145]

Note that the RouteConfig.cs	file is similar to a standard ASP.NET MVC project,
and is used to set up routes for the MVC framework. The WebApiConfig.cs	file	
is	actually	where	the	ASP.NET	Web	API	routing	configuration	is	specified.	The	
WebApiConfig class looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
uswing System.Web.Http;
namespace ASP.NET.MVC.WebAPI
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Here are the links to further references on this topic:
•	 http://msdn.microsoft.com/en-us/

library/ms171868.aspx
•	 http://www.asp.net/web-api
•	 http://idesign.net/articles/

asp_net_web_api_vs_wcf.htm

Working with ASP.NET 4.5

[146]

Summary
In this chapter, we explored the new features in ASP.NET 4.5. We also explored the
ASP.NET Web API and implemented an ASP.NET MVC 4 application that uses the
ASP.NET Web API framework. We explored the ASP.NET Web API with special focus
on how routing and security is handled in the ASP.NET Web API. In the next chapter,
we will discuss how we can consume WCF RIA and RESTful Services using Silverlight.

Working with RESTful
Data Using Silverlight

This is the penultimate chapter of this book in which we will explore how we can
consume WCF 4.5 RIA and RESTful services using Silverlight 5.

In this chapter, we will cover the following points:

•	 Introduction to Silverlight 5
 ° New features in Silverlight 5

•	 Understanding WCF 4.5 RIA Services
•	 Implementing a sample application that uses WCF 4.5 RIA Services
•	 Consuming the WCF 4.5 RIA service using a Silverlight 5 client

Introducing Silverlight 5
Silverlight (codenamed Windows Presentation Foundation/Everywhere or WPF/E)
is a browser plugin. Silverlight is a client-side technology that provides support
for RIA. It can be used to enhance the look and feel of web-based applications.
The new versions of Silverlight contain enhanced features for building RIA-based
business applications and rich media applications. Cross-browser and cross-platform
compatibility and awesome support for rich graphics and animation are some of the
striking features of Silverlight. Also, it runs in a sandbox environment—a subset of
the WPF Framework.

Working with RESTful Data Using Silverlight

[148]

The newer versions of Silverlight provide great support for Printing (including
virtual print preview), COM Automation, Web cam and microphone, MEF
(managed extensibility framework), and WCF 4.5 RIA Services. On a different note,
the performance of Silverlight 5 applications has been optimized to a great extent.

WCF 4.5 RIA Services provide a framework that helps you to connect .NET client
objects with .NET server objects using WCF 4.5. The newer version of Silverlight
provides support for WCF 4.5 RIA Services. Note that WCF 4.5 RIA Services
(formerly known as .NET RIA services) exposes data in an optimized .NET Binary
format or ATOM, JSON, or in an OData format to the Silverlight application. WCF
4.5	RIA	Services	simplifies	the	development	of	RIA	applications,	that	is,	applications	
designed using technologies like Silverlight 5. RIA services provides you with a
framework that eliminates the need of duplicating your middle-tier components.

Silverlight provides excellent support for developing the next generation of
cross-browser and cross-platform Rich Internet Applications (RIAs). It facilitates
the design and development of engaging, interactive user experiences for web and
mobile applications. However, Silverlight 5 looks like the last release of Silverlight
from Microsoft, and HTML 5 will be the choice going forward.

The choice between opting for Silverlight 5 or HTML 5 depends on many factors. If
you are creating a Line of Business Application (LOB), you can choose Silverlight
5 and leverage its data binding features. On the contrary, if you need applications
where images, links and textboxes, animations, and interactivity is needed, HTML
5 is a better choice. However, Silverlight 5 is better suited for intranet applications
rather than web-based applications. Also, note that Silverlight 5 is only supported on
Windows Phones.

New features in Silverlight 5
The following are the new features added to Silverlight 4 and 5:

•	 Enhancements to controls: The new features added to the controls in
Silverlight	5	include:	text	overflow,	support	for	multi-click,	type-ahead	
text search, incorporation of the DataContextChanged event, text tracking,
improvements in text rendering, layout, clarity, and so on. In Silverlight 5,
you	can	set	the	default	filename	when	using	the	SaveFileDialog box using
the DefaultFileName property. Here is how you can use it:
SaveFileDialog fileDialog = new SaveFileDialog();
fileDialog.DefaultFileName = "Demo.txt";
fileDialog.ShowDialog();

Chapter 6

[149]

•	 Improvements to data binding.
•	 XAML changes: In the XAML stack, the features that have been added in

Silverlight 5 include: XAML debugging, markup extensions, implicit data
templates, binding in styles, and so on. Extensible Application Markup
Language or XAML is an XML-based declarative markup language from
Microsoft that enables you to design stunning user interfaces for your WPF
or Silverlight applications. The XAML content is stored in an .xaml	file,	
and	you	can	use	XAML	to	separate	the	user	interface	definition	of	your	
applications	from	the	runtime	logic	by	using	code-behind	files.

Note that XAML debugging works only in Internet
Explorer 9 and above.

•	 Implicit data template is a great new feature that enables you to set a data
type using the DataType property to the data template, instead of attaching
the data template to every control in your page. Here's an example of a code
snippet that illustrates this:
<ListBox x:Name="users">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel>
<TextBlock Text="{Binding FirstName}" FontWeight="Bold" />
<TextBlock Text="{Binding LastName}" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>

Mark-up extensions is a feature that enables you to execute code at
XAML parsing time . These include {Binding}, {StaticResource},
{RelativeSource}, and so on. You can also create your own custom
markup extensions.

•	 Updates/changes to user interface, graphics, and media.

Working with RESTful Data Using Silverlight

[150]

•	 Support for Webcam and Microphone: Silverlight 4 and Silverlight 5 enables
you to build applications that have the capability of sharing video and audio.

•	 Optimized performance: Applications built using Silverlight 4 and Silverlight
5 are amazingly fast compared to the earlier versions of Silverlight. Also,
Silverlight 5 applications start much quicker. Silverlight 5 provides support
for 64-bit operating systems and allows trusted applications to access the
local	file	system	without	any	restriction.

•	 Enhanced Support for COM Interoperability: Silverlight 4 and Silverlight 5
can interoperate with COM interfaces. The following code snippet shows
how	to	communicate	with	Microsoft	Office	applications	from	Silverlight:
 dynamic excelObject =
 ComAutomationFactory.CreateObject
 ("Excel.Application");
 excelObject.Visible = true;
 dynamic workbookObject = excelObject.workbooks;
 workbookObject.Add();
 dynamic sheetObject = excelObject.ActiveSheet;

•	 To make your Silverlight 4 and Silverlight 5 applications communicate with
Microsoft Word, you can write the following piece of code:
 dynamic wordObject =
 ComAutomationFactory.CreateObject
 ("Word.Application");
 wordObject.Documents.Add();
 wordObject.Visible = true;

•	 Improved support for RIA services: With Silverlight 5, support for WCF 4.5
RIA Services has been improved. You now have support for complex types,
better MVVM support, and also support for much better customization of the
generated code.

Chapter 6

[151]

•	 Enhanced support for out-of-browser applications: Silverlight 4 and
Silverlight 5 provides support for RIA applications, and this support is
provided without you having to download and install any additional code or
runtime. You now have support for cross-domain network access, accessing
user's folders, COM Interop, and HTML hosting.

•	 Note	that	you	include	the	following	configuration	in	the	
ApplicationManifest.xaml	file,	so	that	you	can	leverage	the	elevated	
permissions while installing and using out-of-browser applications.
<OutOfBrowserSettings.SecuritySettings>
<SecuritySettings ElevatedPermissions="Required" />
</OutOfBrowserSettings.SecuritySettings>

WCF 4.5 RIA Services
Note that in data centric systems, that is, systems that depend heavily on data, the
data can come from disparate systems. Now, your application would need to have
the business logic objects and other server objects reside on the client side so that you
can access the data.

The major problem with this type of approach is the duplication of code, and also the
high consumption of memory resources at the client side. This is where WCF 4.5 RIA
Services comes to the rescue. Incidentally, WCF 4.5 RIA Services was introduced in
.NET Framework 4 and Silverlight 4. It allows developers to design and implement
applications sans the need of a service plumbing code.

The following diagram illustrates the architectural components of a typical WCF 4.5
RIA Services application:

Business Logic and Data
Access Components

Data Access
Layer

Business
Logic

Presentation Tier

Silverlight
DataControl

Domain
Data SourceDatabase

Server Client

Working with RESTful Data Using Silverlight

[152]

WCF 4.5 RIA Services	(built	on	top	of	the	WCF	4.5	services)	simplifies	n-tier	
application development (especially applications that use Silverlight) without
you having to write a service plumbing code. In essence, if you use WCF 4.5 RIA
Services, your application logic can reside on the server. This can be made available
to the client without the need of duplication of the application's logic components
on the client side, that is, at the service consumer's end. RIA services are built on
top of WCF 4.5, and simplify the client-side programming model. However, there
are a few potential drawbacks of RIA services too. Most importantly, working with
metadata is a pain, especially when you need to update your model often. If you
have a database that contains many entities, you would end up spending more time
updating your model when you are using RIA services.

If you use WCF 4.5 RIA Services, the service consumer
can get the latest updates as soon as your business
logic components at the server side changes.

Here is a quick look at the features provided by WCF 4.5 RIA Services:

•	 When you use WCF 4.5 RIA Services, the client-side instances are created
through	a	reflection	depending	on	the	server-side	objects,	in	lieu	of	service	
contracts, that are exposed by the services that execute on the server.

•	 WCF 4.5 RIA Services provide support for serializing LINQ queries; so,
you can write your LINQ queries at the client side and execute it at the
server end.

Implementing a sample application
In this section, we will implement a sample application that illustrates how you can
design and implement a WCF 4.5 RIA Service and then consume it using Silverlight
5. When you create a Silverlight application, you can check the Enable WCF RIA
Services checkbox. This will ensure that an RIA services link is created, when you
eventually build the complete solution, the client-side code will be generated for the
domain services and the shared code.

To get started using WCF 4.5 RIA Services in Silverlight 5, follow these simple steps:

1. Open Visual Studio 2013 IDE.
2. Click on File and then New Project.

Chapter 6

[153]

3. Select Silverlight from the templates displayed, and save it with a Name:, as
shown in the following screenshot:

4. Next, delete the Class1.cs files	in	the	server	and	client	projects	in	the	
Solution Explorer window.

5. After you delete the Class1.cs	file	in	both	the	Server and Client projects,
the Solution Explorer window would look like this:

Working with RESTful Data Using Silverlight

[154]

6. Next, right-click on References in the Demo.Web project, and select
Manage NuGet Packages... from the menu that is displayed, as shown
in the following screenshot:

Chapter 6

[155]

7. From the list of packages Online | All, you can see EntityFramework listed
on the next page. Click on Install, as shown in the following screenshot:

Once you click on Install, the installation of Entity Framework will start.

Note that you can install Entity Framework also by executing
commands in the Package Manager Console. You can learn
more details about the version of Entity Framework from the
NuGet web site: http://www.nuget.org/packages/
entityframework.

Working with RESTful Data Using Silverlight

[156]

After Entity Framework has been successfully installed, you can see the
green tick symbol as shown in the following screenshot:

8. Next, create a solution folder named Models, and a new entity data model
using the AdventureWorks database.

Chapter 6

[157]

9. Next, create two folders in your web project, one named App-Code and the
other named Services.

10. Now, create a DomainService class. To do this, navigate to Add | New
Item on the Services solution folder, and select Web from the list of the
installed templates. Then select Domain Service Class. Name this class
DepartmentDomainService.cs and, click on Add.

Working with RESTful Data Using Silverlight

[158]

If you would like to leverage the Entity Framework entity
data model with WCF 4.5 RIA Services, you should convert it
to "ObjectContext" based model, otherwise you wouldn't see
the entities listed when you are creating the domain service.
You would observe a message that states: Some Entity
Framework context classes may have been excluded.

To overcome this, open your entity data model in the
designer mode, and change the Code Generation Strategy
from None to Default. Next, delete the two .tt files that are
adjacent to the model, and then rebuild the project.

11. The next step is to add a domain service class. Refer to the
following screenshot:

12. When you click on OK, the domain service class for the Department entity
will be created automatically by the framework.

Chapter 6

[159]

It should be noted that if you add a class library project to a
Silverlight business application project, you are constrained
from adding an authentication service to the server project.
The reason of this is that the user object in the Silverlight
business application template cannot be accessed from the
class library project.

It should be noted that Silverlight is incapable of sharing assemblies with the server
side. To bridge this gap .NET RIA Services are used. If .NET RIA Services are used,
classes that are almost a replica of the domain classes are code generated on the
client side. This ensures that you can move objects back and forth between the server
side and the client side. The following diagram illustrates how the RIA Link is
established between a Silverlight Application and a Web Application, when you
use WCF RIA Services and consume them using Silverlight:

WCF RIA Services

Web Application

RIA Link

Silverlight Application

Now let's take a look at the Domain Service class that was automatically generated.
Here's how the DepartmentDomainService class will look like:

namespace Demo.Web.Services
{
 using System.Data;
 using System.Linq;
 using System.ServiceModel.DomainServices.EntityFramework;
 using System.ServiceModel.DomainServices.Hosting;
 using Demo.Web.Models;

 [EnableClientAccess()]
 public class DepartmentDomainService :
 LinqToEntitiesDomainService<AdventureWorks2008R2Entities>
 {
 public IQueryable<Department> GetDepartments()
 {

Working with RESTful Data Using Silverlight

[160]

 return this.ObjectContext.Departments;
 }

 public void InsertDepartment(Department department)
 {
 if ((department.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(department, EntityState.Added);
 }
 else
 {
 this.ObjectContext.Departments.
 AddObject(department);
 }
 }

 public void UpdateDepartment(Department currentDepartment)
 {
 this.ObjectContext.Departments.AttachAsModified
 (currentDepartment, this.ChangeSet.GetOriginal
 (currentDepartment));
 }

 public void DeleteDepartment(Department department)
 {
 if ((department.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(department,
 EntityState.Deleted);
 }
 else
 {
 this.ObjectContext.Departments.Attach(department);
 this.ObjectContext.Departments.
 DeleteObject(department);
 }
 }
 }
}

Chapter 6

[161]

Refer to the preceding code snippet. When building LOB applications,
common features are create, update, read, and delete operations on the data.
The EnableClientAccessAttribute attribute in the System.Web.Ria
namespace enables the client-side code to be generated at the compile time.

You	can	now	specify	the	necessary	configuration	to	consume	the	data	exposed	by	
this WCF 4.5 RIA Service.

Now, let's quickly create a domain service class based on SecurityDB we created
earlier in this book.

Follow these steps:

1. Create a new project named DomainServices.
2. Create an entity data model based on the Control and ControlType tables of

SecurityDB as shown in the following screenshot:

3. Select the newly created project, then right-click and navigate to
Add | New Item.

Working with RESTful Data Using Silverlight

[162]

4. Select Domain Service Class from the templates displayed as shown in the
following screenshot:

5. Now, name the Domain Service Class as SecurityDomainService.cs and
click on Add. You will see a page that looks like the following screenshot:

Chapter 6

[163]

As you can see, two entities Control and ControlType are listed. Select both of them
and click on OK.	The	Domain	service	Class	will	now	be	generated.	At	first	glance,	
the SecurityDomainService class looks like this:

namespace DomainServices
{
 using System.Linq;
 using System.ServiceModel.DomainServices.EntityFramework;
 using System.ServiceModel.DomainServices.Hosting;
 [EnableClientAccess()]
 public class SecurityDomainService :
 LinqToEntitiesDomainService<SecurityDBEntities>
 {

Working with RESTful Data Using Silverlight

[164]

 public IQueryable<Control> GetControls()
 {
 return this.ObjectContext.Controls;
 }

 public IQueryable<ControlType> GetControlTypes()
 {
 return this.ObjectContext.ControlTypes;
 }
 }
}

CRUD operations
The next step is to add the necessary CRUD methods to Domain Service for creating
a new record, updating an existing record, deleting an existing record, and retrieving
one or more records belonging to the Control or ControlType tables.

Here's the complete code of the SecurityDomainService class after the necessary
CRUD methods have been added:

namespace DomainServices
{
 using System.Data;
 using System.Linq;
 using System.ServiceModel.DomainServices.EntityFramework;
 using System.ServiceModel.DomainServices.Hosting;

 [EnableClientAccess()]
 public class SecurityDomainService :
 LinqToEntitiesDomainService<SecurityDBEntities>
 {
 public IQueryable<Control> GetControls()
 {
 return this.ObjectContext.Controls;
 }

 public IQueryable<ControlType> GetControlTypes()
 {
 return this.ObjectContext.ControlTypes;
 }

 public IQueryable<Control> GetControls()
 {
 return this.ObjectContext.Controls;
 }

Chapter 6

[165]

 public IQueryable<ControlType> GetControlTypes()
 {
 return this.ObjectContext.ControlTypes;
 }

 public void InsertControl(Control control)
 {
 if ((control.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(control, EntityState.Added);
 }
 else
 {
 this.ObjectContext.Controls.AddObject(control);
 }
 }

 public void InsertControlType(ControlType controlType)
 {
 if ((controlType.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(controlType, EntityState.Added);
 }
 else
 {
 this.ObjectContext.ControlTypes.
 AddObject(controlType);
 }
 }

 public void UpdateControls(Control controlObj)
 {
 this.ObjectContext.Controls.
 AttachAsModified(controlObj,
 this.ChangeSet.GetOriginal(controlObj));
 }

 public void UpdateControlTypes(ControlType controlTypeObj)
 {
 this.ObjectContext.ControlTypes.
 AttachAsModified(controlTypeObj,
 this.ChangeSet.GetOriginal(controlTypeObj));
 }

Working with RESTful Data Using Silverlight

[166]

 public void DeleteControls(Control controlObj)
 {
 if ((controlObj.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(controlObj,
 EntityState.Deleted);
 }
 else
 {
 this.ObjectContext.Controls.Attach(controlObj);
 this.ObjectContext.Controls.
 DeleteObject(controlObj);
 }
 }

 public void DeleteControlTypes(ControlType controlTypeObj)
 {
 if ((controlTypeObj.EntityState !=
 EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.
 ChangeObjectState(controlTypeObj,
 EntityState.Deleted);
 }
 else
 {
 this.ObjectContext.ControlTypes.
 Attach(controlTypeObj);
 this.ObjectContext.ControlTypes.
 DeleteObject(controlTypeObj);
 }
 }
 }
}

Chapter 6

[167]

To consume the Domain Service from Silverlight 5, you need to follow the same
steps as discussed earlier in this chapter.

Here are a few links for further reference on this topic:

•	 http://msdn.microsoft.com/en-us/library/
gg986857%28v=vs.95%29.aspx

•	 http://www.silverlightshow.net/items/WCF-RIA-
Services-Part-1-Getting-Started.aspx

•	 http://www.johnpapa.net/silverlight5features/
•	 http://msdn.microsoft.com/en-us/library/

ee707336%28v=vs.91%29.aspx
•	 http://code.msdn.microsoft.com/silverlight/

Getting-Started-WCF-RIA-1469cbe2
•	 http://mtaulty.com/CommunityServer/blogs/mike_

taultys_blog/archive/2010/05/04/silverlight-
and-wcf-ria-services-1-overview.aspx

Summary
You can use WCF 4.5 RIA Services to write applications that range from small
business	applications	to	significantly	complex	applications.	In	this	chapter,	we	have	
discussed WCF 4.5 RIA Services and how they can be consumed from Silverlight 5
applications. In the next chapter, we will discuss some of the advanced features that
include the best practices in using WCF Services and ASP.NET Web API.

Advanced Features
This is the last chapter of this book, where we will explore some advanced concepts in
WCF and Web API.

In this chapter, we will cover the following points:

•	 Best practices in using WCF services
•	 Best practices in using ASP.NET Web API

Best practices in using WCF
Windows Communication Foundation (WCF)	is	a	unified programming model
for building service-oriented applications. WCF provides a powerful framework to
design,	build,	configure,	and	deploy	SOA based applications, where SOA stands for
Service Oriented Architecture.

Microsoft released WCF, initially codenamed Indigo, in 2006 as part of .NET
Framework 3.0.

WCF enables developers to build secure, reliable, and transacted solutions that
integrate across different platforms and provides a high degree of interoperability
with existing investments.

The core philosophy of WCF can be boiled down to the following three key concepts
commonly known as ABC:

•	 Address
•	 Binding
•	 Contract

In this section, we will explore the best practices to consider when creating
applications using WCF.

Advanced Features

[170]

WCF security issues
In this section, we will explore how we can implement a robust security for our WCF
services. We will start our discussion with a brief introduction to WCF bindings.

Bindings
A binding is used to specify the transport channel (HTTP, TCP, pipes, and Message
Queuing)	and	the	protocols	(Security,	Reliability,	and	Transaction	flows).	A	binding	
comprises of binding elements, and also includes message encoding elements
(text/XML, MTOM, and binary). These binding elements denote how an endpoint
communicates with service consumers. WCF provides support for nine built-in
bindings. A binding must include at least one transport binding element, one encoding
binding element, and one or more other transport protocol bindings, such as security
and	reliability.	Note	that	the	binding	information	that	needs	to	be	specified	in	the	
server and the client is different; that is, you have to specify the binding information in
the	configuration	file	of	your	WCF	service	and	also	in	the	configuration	file	in	the	WCF	
service client.

In	WCF,	the	three	major	sections	in	WCF	configuration	scheme	are	ServiceModel,	
bindings, and services.

In	essence,	binding	is	an	attribute	of	an	endpoint,	and	you	can	use	it	to	configure	the	
transport	protocol,	encoding,	and	security	specifications	of	a	service.	Now,	which	is	
the	binding	I	should	use	and	when?	Here's	the	rule	of	thumb:

•	 WsHttpBinding: You can use this type of binding if you need to expose your
service over the Internet.

•	 basicHttpBinding: You should select this type of binding if you need to
expose your WCF service to legacy clients, such as an ASMX web service.
One of the major differences between WsHttpBinding and basicHttpBinding
is in message security.

•	 WsFederationHttpBinding: This is a special type of of WS binding that
offers support for federated security.

•	 NetTcpBinding: You can use this type of binding if you need to support
WCF clients within an intranet. This is the most optimized and fastest
binding available, and supports reliability, transactions, and security.
NetTcpBinding provides support for TCP protocol and both the binary
as well as encoding methods.

Chapter 7

[171]

•	 NetPeerTcpBinding: This binding provides support for the features of
netTcpBinding, and is much more secure for a peer-to-peer environment
that uses WCF services.

•	 netNamedPipeBinding: This type of binding is a good choice if you need to
support WCF clients on the same machine.

•	 netMsmqBinding: You can select this type of binding if you need to support
disconnected queued calls.

•	 wsDualHttpBinding: You can select this type of binding if you would like to
provide support for bidirectional communication between the service and the
client. This type of binding has all the features of WsHttpBinding; in addition,
it provides support for the Duplex Message Exchange Pattern (MEP).

The following table provides a comparison of the bindings in WCF:

Binding Configuration Protocol/
Transport

Security Transaction Duplex

BasicHttpBinding Basic
Profile 1.1

HTTP/HTTPS None … …

WSHttpBinding WS HTTP,
HTTPS, TCP

Message Yes …

WSDualHttp
Binding

WS HTTP, HTTPS Message Yes Yes

NetTcpBinding .NET Named pipe Transport Yes Yes
NetNamedPipe
Binding

.NET Named pipe Transport Yes Yes

NetMsmqBinding .NET MSMQ Transport Yes No
WSFederationHttp
Binding

WS-federation HTTP, HTTPS Message Yes No

NetPeerTcpBinding Peer TCP Transport … Yes
MsmqIntegration
Binding

MSMQ MSMQ Transport Yes …

You can also have Custom binding that allows
creating a custom binding using a combination
of different binding elements.

Advanced Features

[172]

WCF security
Confidentiality	and	integrity	of	data and information is of utmost importance when
you are using WCF services. You create service operations and then expose them to
the outer world. There are various ways in which you can secure your WCF services,
which are as follows:

•	 Using authentication
•	 Using authorization
•	 Using	certificates
•	 Using transport level security
•	 Using message level security
•	 Using token-based security

Additionally, you can provide security in WCF at two levels. You can either provide
the security at the transport level or at the message level. Now, there are pros and
cons of both these levels.

Transport security is transport dependent. It provides interoperability and improved
performance, and should be used when the message that you send is routed through
intermediate systems, and both the service and the client are located in an intranet
network. However, transport security provides minimum support for credentials
when compared to message security.

Message-level security
In message-level security, the credentials of the user are encapsulated with the message
that is passed between the server and the client. Message security is suitable when the
message needs to be forwarded to other WCF services or routed through intermediate
systems. However, message security is slow in comparison to transport security,
because of the overhead needed to encrypt and sign every message. Also, message
security doesn't support interoperability with older ASMX clients. The credential types
that	message	security	supports	are	Windows,	None,	Certificate,	User	Name,	and	Token.

The following code snippet illustrates how you can implement message-level
security by securing a message using the wsHttpBinding binding:

<wsHttpBinding>
 <binding name = "wsHttp">
 <security mode = "Message">
 <message clientCredentialType = "UserToken"/>
 </security>
 </binding>
</wsHttpBinding>

Chapter 7

[173]

If you are using certificate	security	in	the	message	security	mode,	here's	how you can
secure your WCF services:

<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

To specify message security protection levels on the interface
or operation level, you have to make use of the [ServiceCon
tract(ProtectionLevel)] attribute and set the protection
level. You can choose from any of the supported protection
levels, that is, None, Sign, and EncryptAndSign.

Implement message-level security in WCF 4.5 with the following steps:

1. Create	certificates	for	both	the	server	and	the	client	(service	provider	and	
service consumer) using the makecert.exe tool.

2. Using Visual Studio 2013 IDE, create a WCF application.
3. Specify	the	necessary	binding	behavior	in	the	configuration	file	for	the	server,	

as shown in the following code:
<bindings>
 <wsHttpBinding>
 <binding name="wsHttpEndpointBinding">
 <security>
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

<serviceCredentials>
 <clientCertificate>
 <authentication certificateValidationMode="PeerTrust"/>
 </clientCertificate>
 <serviceCertificate findValue="DemoWCFServer"
 storeLocation="CurrentUser"
 storeName="My"
 x509FindType="FindBySubjectName" />
</serviceCredentials>

Advanced Features

[174]

4. Create the WCF client application, and	configure	the	client	certificate	
credentials, as shown in the following code:

<behaviors>
 <endpointBehaviors>
 <behavior name="CustomBehavior">
 <clientCredentials>
 <clientCertificate findValue="DemoWCFClient"
 x509FindType="FindBySubjectName"
 storeLocation="CurrentUser" storeName="My" />
 <serviceCertificate>
 <authentication
 certificateValidationMode="PeerTrust"/>
 </serviceCertificate>
 </clientCredentials>
 </behavior>
 </endpointBehaviors>
</behaviors>
<client>
 <endpoint address="http://localhost:1234/
 DemoService.svc" binding="wsHttpBinding"
 bindingConfiguration="WSEndpoint"
 contract="Packt.Services.IDemoService"
 name="WSEndpoint"
 behaviorConfiguration="CustomBehavior">
 <identity>
 <dns value="DemoWCFServer"/>
 </identity>
 </endpoint>
</client>

And	you	are	done!

Using the FaultContract attribute
The following code snippet creates an interface with the protection level set to Sign:

[ServiceContract(ProtectionLevel=ProtectionLevel.Sign]
 public interface ISecurityService
 {
 [OperationContract]
 [FaultContract(typeof(FaultDetails))]
 UserLoginHistory GetUserLoginHistory(Int32 userID);
 }

Chapter 7

[175]

The FaultContractAttribute class is used to specify one or more SOAP defaults
that are returned when a call to a service method encounters an error at runtime. The
following	code	snippet	specifies	an	operation	with	the	protection	level	set	to	Sign:

[OperationContract(ProtectionLevel=ProtectionLevel.Sign]

The GetUserLoginInformation service method returns the login history details of
the user, whose user ID is passed as a parameter.

The SecurityService class implements the ISecurityService interface (the service
contract)	and	defines	the	getUserLoginInformation method (the operation contract).
The following code snippet shows how the SecurityService class looks:

public class SecurityService : ISecurityService
 {
 public UserLoginHistory GetUserLoginHistory(Int32 userID)
 {
 try
 {
 return new UserLoginHistory { UserID = userID };
 }
 catch
 {
 FaultDetails faultObject = new FaultDetails();
 faultObject.FaultID = 1;
 faultObject.FaultMessage = "The User ID you
 entered is invalid...";

 throw new FaultException<FaultDetails> (faultObject,
 new FaultReason(faultObject.FaultMessage));
 }
 }
 }

As you can see in the previous code snippet, the GetUserLoginHistory operation
contract returns an instance of UserLoginHistory. I've skipped the code to retrieve
the user login history for the user ID passed as a parameter.

We would need two message contracts, one for storing the user's login
history, and the other for the fault details when a fault exception occurs. The
MessageBodyMemberAttribute class belongs to .NET Framework 4.5, and is
used to specify that a member is serialized as an element inside the SOAP body.

Advanced Features

[176]

The following code snippet is the code for the two message contracts that we would
need to use:

[MessageContract]
public class UserLoginHistory
{
 [MessageBodyMemberAttribute(Order = 1, ProtectionLevel =
 ProtectionLevel.None)]
 public Int32 UserID { get; set; }

 [MessageBodyMemberAttribute(Order = 2, ProtectionLevel =
 ProtectionLevel.Sign)]
 public DateTime LoginTime { get; set; }

 [MessageBodyMemberAttribute(Order = 2, ProtectionLevel =
 ProtectionLevel.EncryptAndSign)]
 public DateTime Password { get; set; }
}

[MessageContract]
public class FaultDetails
{
 [MessageBodyMemberAttribute(Order = 1, ProtectionLevel =
 ProtectionLevel.None)]
 public Int32 FaultID
 {
 get;
 set;
 }

 [MessageBodyMemberAttribute(Order = 2, ProtectionLevel =
 ProtectionLevel.None)]
 public string FaultMessage
 {
 get;
 set;
 }
}

After the service reference has been added, you can consume the service from the
client application using the following code:

try
{
 ChannelFactory<ISecurityService> factory =
 new ChannelFactory<
 ISecurityService>("WSHttpBinding_ISecurityService",
 new EndpointAddress("
 http://localhost/Packt/SecurityService.svc"));

Chapter 7

[177]

 ISecurityService proxy = factory.CreateChannel();
 UserLoginHistory userLoginHistoryObj =
 proxy.GetUserLoginHistory(3);
}
catch (FaultException<FaultDetails> faultExceptionInstance)
{
 //Some code
}

You can turn off security in WCF programmatically. An example
of that is as follows:

bindingObject.Security.Mode = SecurityMode.None;

Transport-level security
Transport security works much faster in comparison to message security, and the
transport-level security is protocol independent.

The available client credential types you can use when you are implementing the
basicHttpBinding or WsHttpBinding binding in the transport security mode
include the following:

•	 None: No security; security is turned off
•	 Basic: Basic authentication works only with the HTTP protocol. Here, the

client is authenticated against the active directory
•	 Digest: This type of authentication is similar to Basic, but in this option, the

credentials are sent as a hash, instead of clear text
•	 NTLM: This also works only with the HTTP protocol, and clients are

authenticated using Windows accounts
•	 Windows: In this option, a Windows token is used to authenticate against

the active directory
•	 Certificate: In this option, a service is authenticated using the service

certificate	or	an	SSL	certificate	if	the	protocol	in	use	is	HTTP

Implementing transport-level security
The following code snippet illustrates how you can implement transport security
using the following code:

NetTcpBinding netTcpBinding = new
 NetTcpBinding(SecurityMode.TransportWithMessageCredential);
netTcpBinding.Security.Transport.ClientCredentialType =
 TcpClientCredentialType.Windows;

Advanced Features

[178]

netTcpBinding.Security.Message.ClientCredentialType =
 MessageCredentialType.Certificate;
Uri adddress = new Uri("net.tcp://Tcp");
ServiceHost serviceHost = new ServiceHost(typeof(
 SecurityService), adddress);
serviceHost.Credentials.ServiceCertificate.SetCertificate(
 StoreLocation.LocalMachine, StoreName.My,
 X509FindType.FindByIssuerName, "Contoso.com");
serviceHost.AddServiceEndpoint(typeof(ISecurityService),
 b, "SecurityService");
serviceHost.Open();
Console.WriteLine("Service Started..........");
Console.Read0Line();

Note that by default, netTcpBinding uses transport
security.	This	implies	that	you	should	configure	the	
client	credentials	to	use	certificate	security.

To implement transport-level	security	through	configuration,	you	should	specify	the	
security	mode	in	the	configuration	file,	as	shown	in	the	following	code	snippet:

<bindings>
 <wsHttpBinding>
 <binding name="TransportSecurity">
 <security mode="Transport">
 <transport clientCredentialType="None"/>
 </security>
 </binding>
 </wsHttpBinding>
</bindings>

To use netTcpBinding with Windows for transport security, you can
use the following code:

<bindings>
 <netTcpBinding>
 <binding name="PacktTcpBinding">
 <security mode="TransportWithMessageCredential" >
 <transport clientCredentialType="Windows" />
 <message clientCredentialType="Certificate" />
 </security>
 </binding>
 </netTcpBinding>
</bindings>

Chapter 7

[179]

If you use HTTPS protocol, you should change httpGetEnabled to
httpsGetEnabled on the service behavior, as shown in the following code snippet:

<behaviors>
 <serviceBehaviors>
 <behavior name="Packt.SecureService.SecurityServiceBehavior">
 <!-- To avoid disclosing metadata information, set the value
 below to false and remove the metadata endpoint above
 before deployment -->
 <serviceMetadata httpsGetEnabled="true"/>
 <!-- To receive exception details in faults for debugging
 purposes, set the value below to true. Set to false
 before deployment to avoid disclosing exception
 information -->
 <serviceDebug includeExceptionDetailInFaults="false"/>
 </behavior>
 </serviceBehaviors>
</behaviors>

The next step is to specify the end points to support the secure communication.
Please refer to the following code:

<services>
 <service name="Packt.SecureService.SecurityService"
 behaviorConfiguration="Packt.SecureService.
 SecurityServiceBehavior" >
 <!-- Service Endpoints -->
 <endpoint address="http://localhost/Packt/SecurityService.svc"
 binding="wsHttpBinding" bindingConfiguration="
 TransportSecurity" contract="
 Packt.SecureService.ISecurityService"/>
 <endpoint address="mex" binding="mexHttpsBinding" contract="
 IMetadataExchange"/>
 </service>
</services>

Advanced Features

[180]

Now you should host your service in IIS. To do this, right-click on the service project
in the solution explorer window, and in the Web tab, select the Use Local IIS Web
Server radio button shown in the following screenshot:

You should also create a virtual directory by clicking on the Create Virtual Directory
button, as shown in the preceding screenshot. The next screen looks like this:

Note that in order to host a service in IIS from Visual
Studio IDE, you should open the Visual Studio 2012 IDE
in administrator mode.

Chapter 7

[181]

You can then go to the Internet Services Manager window and associate an SSL
certificate	to	the	website.	You	should	also	turn	on	SSL	bindings	for	your	website.

Best practices in using WCF services
Here are a few points you should keep in mind while using WCF services:

•	 Don't put proxies in a using statement.
•	 Use the FaultExceptions class for handling service exceptions. You

should use the FaultContracts class to return error information to the
service consumers.

•	 Use message logging to log service operations.
•	 It is always preferable to use a per call instance model.
•	 Use WCF tools, such as SvcUtil.exe, SvcConfigEditor.exe, and

SvcTraceViewer.exe.
•	 You	should	protect	logfiles	from	unauthorized	access,	and	the	logfiles	should	

not contain sensitive information.
•	 Use a proper authentication mechanism to authenticate service consumers.
•	 Use string passwords, and protect access to the credential store.
•	 Use IIS to host your service, unless you would like to use a transport protocol

that is not supported by IIS.
•	 Validate input parameters on the server side, and don't rely on client-side

validation only.
•	 Define	maintainable	services	and	data	contract	versioning.
•	 Define	your	namespaces	clearly	to	avoid	conflict.
•	 Encrypt	configuration	sections	that	contain	sensitive	data.
•	 You should manage binding and endpoint information through

configuration,	and	not	through	code.
•	 Define	services	in	a	class	library,	and	not	directly	in	a	host	project.
•	 Include the FaultContract	attribute	in	the	service	contract	definition.
•	 Use static proxy classes instead of the ChannelFactory class.
•	 Use the Cache to store client proxies if you have to call service

methods frequently.
•	 Use	X509	certificates	instead	of	NTLM.
•	 You should publish metadata only after securing the metadata exchange

endpoint with transport or message-level security.

Advanced Features

[182]

•	 You should favor data contracts over serializable types.
•	 Use WAS hosting wherever possible and IIS hosting for external

HTTP-only services.
•	 You can use Protocol Buffer WCF services for better performance. You

can learn more about Protocol Buffers and how you can use them in
WCF services at http://www.developer.com/net/net/working-with-
protobuf-services-in-.net.html.

Best practices in using the ASP.NET
Web API
ASP.NET Web API is an ideal platform for building RESTful applications on the
.NET framework. The ASP.NET Web API is a framework that can be used to build
Http services regardless of REST or RPC—it is Microsoft's best implementation
of RFC. It allows both IIS and self hosting, and is asynchronous. The Web API is
flexible	and	provides	support	for	separation	of	concerns.	It	enables	you	to	expose	
applications, data, and services to the Web directly over the HTTP protocol. The
ASP.NET Web API relies on basic protocol and formats, such as HTTP, WebSockets,
SSL, JQuery, JSON, and XML. There is no support for higher level protocols, such as
Reliable Messaging or Transactions.

Here's a quick glance at the best practices and tips that you can follow when using
the Web API:

•	 You should use a custom base WebApiController where you can abstract the
controller features and behavior

•	 Use	a	URL	helper	for	filtering	all	the	image	URLs
•	 Always install the MvcRoutingShim plugin to avoid subtle and confusing

behavior with multiple HTTP modules
•	 It is advisable to create a separate controller for each resource

The following code is a quick look at the Base API controller for the Web API
we created earlier in this book. The BaseApiController class extends the
ApiController class, and implements the IBaseApiController interface.

public interface IBaseApiController : IDisposable
{
 Int32 ID { get; set; }
}

public class BaseApiController<T> : ApiController where T :
 class, IBaseApiController

Chapter 7

[183]

{
 BaseRepository<SecurityEntities> repository = null;
 protected string[] includesArray { get; set; }
 public BaseApiController()
 {
 repository = new BaseRepository<SecurityEntities>("
 SecurityEntities");
 }

 public virtual IEnumerable<T> Get()
 {
 return repository.GetData<T>(includesArray);
 }

 public virtual T Get(Int32 id)
 {
 return repository.SearchData<T>(t => t.ID == id,
 includesArray);
 }

 public virtual Int32 Post([FromBody]T value)
 {
 return repository.EditData<T>(value);
 }

 public virtual Int32 Put([FromBody]T value)
 {
 return repository.CreateData<T>(value);
 }

 public virtual Int32 Delete([FromBody]T value)
 {
 return repository.RemoveData<T>(value);
 }
}

References
http://msdn.microsoft.com/en-us/magazine/cc163394.aspx

http://msdn.microsoft.com/en-us/library/ms732362.aspx

http://msdn.microsoft.com/en-us/library/ms733099.aspx

http://msdn.microsoft.com/en-us/magazine/cc163382.aspx

http://msdn.microsoft.com/en-us/library/ff405740.aspx

http://www.codemag.com/article/0611051

http://wcf.codeplex.com/wikipage?title=WCF%20HTTP

Advanced Features

[184]

Summary
WCF	provides	a	platform	for	the	unification	of	a	number	of	technologies	under	one	
single umbrella. It can be used to design and implement platform-independent,
extendable, and scalable services. ASP.NET Web API is a lightweight web-based
framework that uses HTTP as the application protocol. In this chapter, we discussed
the best practices that can be adopted for WCF services and the Web API for
enhanced security, scalability, and performance.

Library References
This appendix is organized into two sections, Section A and Section B.

In Section A, we will explore the following:

•	 Popular REST-based service frameworks/APIs:
 ° Ruby on Rails
 ° Restlet
 ° Django
 ° Flickr
 ° Google
 ° Yahoo!

•	 Working with Visual Studio 2013 IDE

In Section B, we will discuss the following points:

•	 HTTP response codes
•	 The ASP.NET Web API class library

Section A
This is Section A of this appendix. We will start our discussion in this section with
the popular REST-based service frameworks.

Library References

[186]

Popular REST-based service frameworks
Representational state transfer is an architectural paradigm. The key goals of REST
include the following:

•	 Scalability
•	 Compatibility with other technology and platforms
•	 Generality of interfaces
•	 Discoverability; that is, interconnectivity between resources
•	 Components can be deployed independent of one another
•	 Reduced latency
•	 Better security
•	 Extensibility

A RESTful Web API is a web API that conforms to the REST principles. The main
principles of REST include:

•	 Identification	of	resources
•	 Stateless communication
•	 Manipulation of resources through representations
•	 Self-descriptive messages

The following sections will explain the popular REST-based service frameworks
or APIs.

Ruby on Rails
Ruby on Rails is an optimized open source web application framework that runs on
top of the Ruby programming language. Ruby on Rails follows the basic software
engineering patterns and principles. The Rails Web API is a framework that facilitates
the creation of web applications based on the Model-View-Controller (MVC)
framework. The View layer is composed of templates and most of these templates
are HTML-based with embedded Ruby code. The Model layer represents the domain
model, the business logic classes, and the data access classes. The Controller layer
handles incoming HTTP requests. Note that the Rails controller can generate XML,
JSON,	PDFs,	and	also	mobile-specific	views.	You	can	get	more	information on this
framework from http://api.rubyonrails.org/.

Appendix

[187]

Restlet
Restlet provides support for an extensive list of extensions that include the following:

•	 Spring
•	 WADL
•	 XML
•	 JSON
•	 JAX-RS API

The	benefits	of	Restlet	include	the	following:

•	 Support for a fully symmetric client/server API
•	 Support for connector protocols other than HTTP
•	 Support for complete URI routing control through the Restlet API
•	 It is fast and scalable
•	 Powerful	filtering	support
•	 Support for a consistent client/server API

You can explore more on this API from http://restlet.org/discover/features.

Django REST
The Django REST Framework provides	a	powerful	and	flexible	API	using	which	you	
can build Web APIs seamlessly. This API provides an extensive documentation and
an excellent community support. You can know more on this framework from this
link: http://django-rest-framework.org/.

The Flickr REST API
The Flickr REST API is simple and easy to use. Flickr also has some JSON APIs
that you might make use of for invoking the API through JavaScript. You can get
more information in this regard from http://www.flickr.com/services/api/
request.rest.html.

Library References

[188]

The Google API
The Custom Search JSON/Atom API from Google enables developers to write
applications that can leverage this API and retrieve and display custom search in
the applications. This API allows you to use RESTful calls for web search and get
the results in the JSON or Atom format. You can know more on this API from this
https://developers.google.com/custom-search/json-api/v1/overview.

Yahoo! Social REST APIs
The	Yahoo!	REST	APIs provide a collection of URI resources that can provide access
to the following:

•	 Users'	profiles
•	 Status messages
•	 Status updates

These URIs are actually grouped into APIs depending on the information they
return. For more information, you can refer to the following site: http://
developer.yahoo.com/social/rest_api_guide/web-services-intro.html.

Section B
In Section B, we will explore about working with Visual Studio 2013 IDE.

Working with the Visual Studio 2013 IDE
In this section we will explore how we can work with Visual Studio 2013 IDE. We
will	first	start	this	section	with	a	discussion	on	how	we	can	install	and	set	up	Visual	
Studio 2013 IDE in our system.

Installing Visual Studio 2013
In this section we will learn about installing Visual Studio 2013. Visual Studio 2013
RC is now available for download. Here's the link: http://www.microsoft.com/
visualstudio/eng/2013-downloads.

Appendix

[189]

After	you	download	the	setup	file,	double-click	the	file	to	start	the	installation.	

Next, agree to the license terms and privacy policy to move ahead with the
installation, as shown in the following screenshot:

Library References

[190]

When the installation starts, here's what the screen will look like:

After the installation is complete, here is what the screen will look like:

Appendix

[191]

Click on the Restart Now button to restart your system and complete the installation
of Visual Studio 2013.

Here is what the opening screen of Visual Studio 2013 looks like:

Once you invoke Visual Studio 2013, you will observe that it asks for whether you
would like to sign in, as shown in the following screenshot. I selected the option Not
now, maybe later.

Library References

[192]

Next, select your Development Settings:, as shown in the following screenshot. I
selected the General option in my system.

Then, click on the Start Visual Studio button. Visual Studio 2013 will now start the
necessary	preparations/configuration	checks	for	first	time	usage	in	your	system,	as	
shown in the following screenshot:

Appendix

[193]

Once this process is complete, here is what your Visual Studio 2013 IDE would look
like at the first	glance:

Library References

[194]

New features in the Visual Studio 2013 IDE
The new features in Visual Studio 2013 IDE include:

•	 Support for asynchronous debugging
•	 Support for graphics diagnostics
•	 Enhanced code editor features
•	 Support for creating code maps from the code window
•	 Support for mapping call stack within the debugging mode
•	 Expanded ALM capabilities
•	 New IDE features for JavaScript
•	 Support	for	creating	modern	business	apps	for	Office	365
•	 Support for Windows 8.1 app development
•	 Enhanced Windows Azure support including Windows Azure

Mobile Services

HTTP requests and response code
The following table lists the standard HTTP status codes and their uses. To get the
complete information, please refer to the following link:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Status Code Description
100 Informational
200 Successful
201 Created
202 Accepted
204 No content
300 Redirection
304 Not modified
400 Client error
401 Unauthorized
402 Payment required
403 Forbidden
404 Not found
405 Method not allowed

Appendix

[195]

Status Code Description
409 Conflict
500 Server error
501 Not implemented

Abbreviations
•	 HTTP: Hypertext Transfer Protocol
•	 ROA: Resource-Oriented Architectures
•	 SOA: Service-Oriented Architectures
•	 SOAP: Simple Object Access Protocol
•	 REST: Representational State Transfer
•	 RPC: Remote Procedure Call
•	 URL: Uniform Resource Locator
•	 W3C: World Wide Web Consortium
•	 WSDL: Web Service Description Language
•	 XML-RPC: XML Remote Procedure Call

The ASP.NET Web API library reference
(based on .NET Framework Version 4.5)
The ASP.NET Web API comprises the following namespaces:

Namespace Purpose
System.Net.Http This namespace comprises classes of HTTP attributes.

This namespace provides extension methods for the
HttpRequestMessage class.

System.Net.Http.
Formatting

This comprises classes that can be used for serializing and
deserializing the HTTP message body.

System.Net.Http.
Handlers

This contains a collection of event handlers.

System.Net.Http.
Headers

This namespace comprises classes that are related to
HttpHeaders.

System.Web.Http This namespace comprises classes of HTTP attributes.
This namespace contains extension methods for the
HttpConfiguration class.

Library References

[196]

Namespace Purpose
System.Web.Http.
Controllers

This namespace comprises a collection of classes that can
control how the service would work on top of the HTTP
protocol.

System.Web.Http.
Dependencies

This namespace comprises a collection of classes that have a
collection of dependency properties.

System.Web.Http.
Description

This namespace comprises a collection of classes for web API
description.

System.Web.Http.
Dispatcher

This namespace comprises a collection of classes that are
related to action dispatching.

System.Web.Http.
Filters

This namespace comprises a collection of classes that are
related to action-filter attributes.

System.Web.Http.
Hosting

This namespace comprises a collection of classes that are used
in HTTP hosting.

System.Web.Http.
Metadata

This namespace comprises a collection of classes that are
related to common metadata for data model.

System.Web.Http.
Metadata.Providers

This namespace comprises a collection of classes that are
related to metadata providers.

System.Web.Http.
ModelBinding

This namespace comprises a collection of classes that are
related to model binding.

System.Web.Http.
ModelBinding.
Binders

This namespace comprises a collection of classes of model
binders.

System.Web.Http.
Routing

This namespace comprises a collection of one or more classes
that specifies the route properties.

System.Web.Http.
SelfHost

This namespace comprises a collection of one or more classes
that are related to HTTP self-hosted service.

System.Web.Http.
SelfHost.Channels

This namespace comprises a collection of one or more classes
that are related to classes for HTTP binding and security.

System.Web.Http.
Services

This namespace comprises a collection of one or more classes
that are related to default services.

System.Web.Http.
Tracing

This namespace comprises a collection of one or more classes
that are related to tracing.

System.Web.Http.
Validation

This namespace comprises a collection of one or more classes
that are related to model validation.

System.Web.Http.
Validation.
Providers

This namespace comprises a collection of one or more provider
and factory classes that are related to model validation.

System.Web.Http.
Validation.
Validators

This namespace comprises a collection of one or more classes
that are related to model validation.

Appendix

[197]

Namespace Purpose
System.Web.Http.
ValueProviders

This namespace comprises a collection of one or more classes
that are related to value providers.

System.Web.Http.
ValueProviders.
Providers

This namespace comprises a collection of one or more classes
that are related to provider abstractions.

System.Web.Http.
WebHost

This namespace comprises a collection of one or more classes
that are related to web hosting.

References
The following are the reference sites:

•	 http://www.asp.net/web-api

•	 http://www.asp.net/web-api/overview/getting-started-with-
aspnet-web-api/tutorial-your-first-web-api

•	 http://msdn.microsoft.com/en-us/library/hh833994%28v=vs.108%29.
aspx

Index
Symbols
.NET 4.0

RESTful services, implementing in 22
.NET Framework 4.x

enhancements 125
.NET RIA services 159

A
addressability 55
AJAX

about 97
advantages 98

architectural constraints, REST
about 49
cacheable 9
client-server 9
code on demand 9
resource management 10
stateless 9
uniform interface 10

architectural styles
comparing 56, 57

architecture, WCF 14, 15
ASP.NET 112
ASP.NET 4.5

enhancements 126
used, for consuming Security

Service 112, 114
ASP.NET MVC

used, for consuming Security
Service 115, 117

ASP.NET MVC Framework
about 114
asynchronous operations 117-120

MVC design pattern 114, 115
ASP.NET Web API

about 123, 130
best practices 182
implementing, for security

database 134-145
namespaces 195-197
routing feature 132-134
working with 124, 131

ASP.NET Web API architecture 131, 132
Asynchronous JavaScript and XML.

See AJAX
asynchronous operations, ASP.NET MVC

Framework 117-120
asynchronous programming 125
async keyword 117
attributes, REST

UriTemplate class 20
WebGet 19
WebHttpBehavior 17
WebHttpBinding 17
WebInvoke 20
WebMessageFormat 19
WebOperationContext 18
WebServiceHost 16

Automatic Help page
about 76
bindings, in WCF 76, 77

await keyword 117

B
basicHttpBinding 84, 170
BasicHttpBinding 67, 77
basic properties, ROA

addressability 51, 55

[200]

connectedness 51
representation 51, 56
resource interface 51
resource link 51
statelessness 51, 55

benefits, Restlet 187
best practices, ASP.NET Web API 182
best practices, WCF 169
best practices, WCF services 181
BindData() method 121
binding

about 76, 170
selecting 84

binding information
specifying 37

built-in bindings, WCF 15
about 60
BasicHttpBinding 77
MsmqIntegrationBinding 78
NetMsmqBinding 78
NetNamedPipeBinding 78
NetPeerTcpBinding 79
NetTcpBinding 78
WsDualHttpBinding 80
WsFederationHttpBinding 81
WsHttpBinding 77

C
C# 100
channels 61
Cloud Oriented Architecture 43
Common Language Runtime (CLR) 112
components, REST request

desired actions 8
developer ID 8
endpoint URL 8
parameters 8

concepts, WCF
address 60
bindings 60
contracts 61

contracts
about 61
data contract 61
message contract 61
service contract 61

CORS
about 98
URL 98

Create, Read, Update, and Delete. See
CRUD operations

createResource method 53
Cross-Origin Resource Sharing. See CORS
CRUD operations

about 7, 164
DELETE request 7
GET request 7
HEAD request 7
POST request 7
PUT request 7

D
Data Contract 61, 92
data source control

about 102
LinqDataSource control 103, 104
ObjectDataSource control 102
SiteMapDataSource control 103
SqlDataSource control 102
XMLDataSource control 103

default configuration model, WCF 4.5 24-26
DELETE request 7, 52
deleteResource method 53
DHTML 98
Django REST

about 187
URL, for info 187

Document Object Model (DOM) 98
DomainService

consuming, from Silverlight 5 167
domain service class

creating, based on SecurityDB 161-163
Domain Specific Language (DSL) 100
Duplex Message Exchange Pattern 80

E
elements, SOA

advertising 47
discovery 47
messages 47
service 45
service consumer 45

[201]

service contract 46
service description 47
service lease 46
service provider 45
service proxy 46
service registry 46

enhanced state management
features 126, 127

enhancements, ASP.NET 4.5
about 126
authentication 129
enhanced state management

features 126, 127
Extensible Output Caching 128
leveraging IIS features 129
performance monitoring 128
Search Engine Optimization (SEO) 129
Web API 129
web publishing 129
Web Sockets 129

enhancements, .NET Framework 4.x
asynchronous programming support 125

enhancements, Silverlight 5 148-150
enhancements, Visual Studio 2013 IDE 194
enhancements, WCF 4.5

about 62
Automatic Help page 76
better support, for REST 62
discovery 62, 68, 69
REST improvements 71, 72
routing service 62, 72-75
simplified	configuration		62,	65-67
simplified	IIS	hosting		62,	70,	71
standard endpoints 62, 67
workflow	services		63

enhancements, WCF Framework 63, 64
Entity Data Model (EDM) 107
error status codes, HTTP 53
Extensible Markup Language. See XML
Extensible Output Caching 128

F
FaultContract attribute

using 174-176

features, jQuery
browser compatibility 100
simplified	event	handling	model		100

features, WCF RIA Services 152
Flickr REST API

about 187
URL, for info 187

G
getMetaInformation method 53
GET request 7, 52
getResourceRepresentation method 53
Google API

about 188
URL, for info 188

Google Fusion Tables 7

H
HEAD request 7, 52
HTTP

error status codes 53
methods 52
redirection status codes 52
server error status codes 53
status codes 52, 194

HTTP protocol 6
HTTPS protocol 6
Hypertext Transfer Protocol. See HTTP

I
installation, Visual Studio 2013 188-193
Internet Information Server (IIS) 8.0 129

J
JavaScript 98
JavaScript Object Notation. See JSON
jQuery

about 99
features 100

JSON
about 39, 99
data, returning 39, 40
URL 99

[202]

L
Language Integrated Query. See LINQ
Line of Business Application (LOB)

about 148
applications 100

LINQ
about 100, 101
service operations 108-110

LinqDataSource control 103, 104
LINQ to Entities 107
LINQ to Objects 107
LINQ to SQL

about 106
advantages 110

LINQ to XML 105

M
MEF (managed extensibility

framework) 148
message contract 61
Message Exchange Pattern (MEP) 171
message level security, WCF

about 85, 86, 172-174
FaultContract attribute, using 174-176

message patterns, WCF 61
methods, HTTP

DELETE 52
GET 52
HEAD 52
OPTIONS 52
POST 52
PUT 52

modifyResource method 53
MsmqIntegrationBinding 78
multiple bindings

using 81-83
MvcRoutingShim plugin 182

N
namespaces, LINQ

System.Data.Linq 101
System.Linq 101

netMsmqBinding 78, 84, 171
netNamedPipeBinding 78, 84, 171

netPeerTcpBinding 79, 80, 171
netTcpBinding 78, 84, 170
Nuxeo 7

O
ObjectDataSource control 102
Object Oriented Architecture 43, 47
Open Data Protocol (OData)

about 123
working with 124

OPTIONS request 52

P
parameters, WebGet attribute

BodyStyle 40
RequestFormat 40
ResponseFormat 40
UriTemplate 40

Peer Name Resolution Protocol (PNRP) 79
performance monitoring 128
POST request 7, 52
PUT request 7, 52

Q
query language 100

R
redirection status codes, HTTP 52
Remote Procedure Call. See RPC
Representational State Transfer. See REST
representations 56
resource 54
resource interface 51 55
resource link 51 55
resource methods, HTTP

createResource 53
deleteResource 53
getMetaInformation 53
getResourceRepresentation 53
modifyResource 53

resource name 55
Resource Oriented Architecture. See ROA
resource representation 55

[203]

REST
about 5, 6, 12
architectural constraints 9, 49
architectural style 6
attributes 16
goals 186
improvements 30, 31, 71, 72
key principles 49
principles 186
versus SOAP 7

REST architectural style
goals 6, 7

REST-based architecture
resource concept 7, 8

REST-based service frameworks
about 186
Django REST 187
Flickr REST API 187
Google API 188
Restlet 187
Ruby on Rails 186
Yahoo!	Social	REST	APIs		188

RESTful service
consuming 41
DELETE operation 54
designing 36
GET operation 54
implementing, in .NET 4.0 22
implementing, WCF used 86, 87
implementing, WCF 4.5 used 32
POST operation 54
PUT operation 54

RESTful services, in .NET 4.0
modes, of operation 27-29
simplified	IIS	hosting		29
standard endpoints 27
UserNamePasswordValidator class 23

RESTful WCF service
hosting 38
hosting, inside console application 39

RESTful Web Service 5, 21, 22
Restlet

about 187
benefits		187
URL, for info 187

REST request
components 8

URL 8
RIA Link

about 159
establishing, between Silverlight

Application and Web Application 159
Rich Internet Applications (RIAs) 148
ROA

about 43, 49, 54
basic properties 51

routing feature, ASP.NET Web API 132-134
routing service 72-75
Ruby on Rails

about 186
URL, for info 186

S
sample application

implementing 152
Search Engine Optimization (SEO) 129
security database

ASP.NET Web API, implementing
for 134-145

creating 87-89
Security Service

about 111
consuming 112
consuming, ASP.NET 4.5 used 112, 114
consuming, ASP.NET MVC used 115, 117
consuming, WPF used 121
creating 90-92
hosting 94
RESTful, making 92, 93

server error status codes, HTTP 53
service 45
service behavior

applying 62
Service Broker (Registry) 48
service class 91
service consumer 45, 48
service contract 46, 61, 91, 92
service description 47
service lease 46
service operations, LINQ 108-110
Service Oriented Architecture. See SOA
service provider 45
service proxy 46

[204]

service registry
about 46
advantages 46

Silverlight 147
Silverlight 5

enhancements 148-150
used, for consuming DomainService 167
WCF RIA Services, using in 152-158

Simple Object Access Protocol. See SOAP
simplified configuration 65-67
simplified IIS hosting 29 70, 71
SiteMapDataSource control 103
SOA

about 22, 43, 44, 48, 54, 59, 169
benefits		44
elements 45

SOAP
about 10
message format 10
versus REST 7

SOAP request
example 10

SOAP response
example 11, 12

software architecture 43
Sones GraphDB 7
SqlDataSource control 102
standard endpoints 27, 67
statelessness 55
status codes, HTTP 52, 194
System.Data.Linq namespace 101
System.Linq namespace 101
System.Net.Http.Formatting namespace 195
System.Net.Http.Handlers namespace 195
System.Net.Http.Headers namespace 195
System.Net.Http namespace 195
System.Web.Http.Controllers

namespace 196
System.Web.Http.Dependencies

namespace 196
System.Web.Http.Description

namespace 196
System.Web.Http.Dispatcher

namespace 196
System.Web.Http.Filters namespace 196
System.Web.Http.Hosting namespace 196
System.Web.Http.Metadata namespace 196

System.Web.Http.Metadata.Providers
namespace 196

System.Web.Http.ModelBinding.Binders
namespace 196

System.Web.Http.ModelBinding
namespace 196

System.Web.Http namespace 195
System.Web.Http.Routing namespace 196
System.Web.Http.SelfHost.Channels

namespace 196
System.Web.Http.SelfHost namespace 196
System.Web.Http.Services namespace 196
System.Web.Http.Tracing namespace 196
System.Web.Http.Validation

namespace 196
System.Web.Http.Validation.Providers

namespace 196
System.Web.Http.Validation.Validators

namespace 196
System.Web.Http.ValueProviders

namespace 197
System.Web.Http.ValueProviders.Providers

namespace 197
System.Web.Http.WebHost namespace 197
System.XML.Linq namespace 106

T
Task-based Asynchronous Pattern

(TAP) 117
technologies, for AJAX

DHTML 98
DOM 98
JavaScript 98
XML 98
XMLHttpRequest object 98

toJSONString() method 99
transport level security, WCF

about 84, 177
implementing 177-181

U
Uniform resource identifier 55
Unobtrusive AJAX 98
UriTemplate class 20
UserNamePasswordValidator class 23, 63

[205]

V
VB.NET compiler 100
Visual Studio 2013

enhancements 194
installing 188-193

Visual Studio 2013 IDE
working with 188

W
WCF

about 14, 59, 169
architecture 14, 15
best practices 169
binding 76, 77
bindings, comparing 171
built-in bindings 15
channels 15
exploring 60
message patterns 61
security issues 170
used, for implementing RESTful

services 86, 87
WCF 4.5

about 16
default	configuration	model		24-26
enhancements 24, 62
used, for implementing RESTful Service 32

WCF Framework
enhancements 63

WCF RIA Services
about 148-152
features 152
using, in Silverlight 5 152-158

WCF security
about 172
message level security 85, 86, 172-174
transport level security 84, 177

WCF service
creating 32-35
best practices 181
hosting 35
securing 84

Web API 129

WebGet attribute 19
parameters 40

WebHttpBehavior attribute 17
WebHttpBehavior class 76
WebHttpBinding attribute 17
WebInvoke attribute 20
WebMessageFormat attribute 19
WebOperationContext attribute 18
web publishing 129
WebServiceHost attribute 16
Web Sockets 129
Windows Activation Service (WAS) 38
Windows Communication Foundation.

See WCF
Windows Presentation Foundation.

See WPF
World Wide Web (WWW) 6
WPF

about 120, 121
used, for consuming Security Service 121

wsDualHttpBinding 84, 171
WsFederationHttpBinding 81, 170
WsHttpBinding 77, 84, 170

X
XML 98
XMLDataSource control 103
XMLHttpRequest object 98
XML-RPC 13

Y
Yahoo! REST APIs 188
Yahoo! Social REST APIs

URL, for info 188

Thank you for buying
ASP.NET Web API

Build RESTful web applications and services on the .NET framework

About Packt Publishing
Packt,	pronounced	'packed',	published	its	first	book	"Mastering	phpMyAdmin	for	Effective	
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly	focused	books	on	specific	technologies	and	solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the	job	done.	Packt	books	are	more	specific	and	less	general	than	the	IT	books	you	have	seen	in	
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to	discuss	it	first	before	writing	a	formal	book	proposal,	contact	us;	one	of	our	commissioning	
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Visual Studio 2012 and .NET 4.5
Expert Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1. Step-by-step instructions to learn the power
of .NET development with Visual Studio 2012

2. Filled with examples that clearly illustrate
how to integrate with the technologies and
frameworks of your choice

3. Each sample demonstrates key conceptsto
build your knowledge of the architecture in
a practical and incremental way

.Net Framework 4.5 Expert
Programming Cookbook
ISBN: 978-1-84968-742-3 Paperback: 276 pages

Over 50 engaging recipes for learning advanced
concepts of .NET Framework 4.5

1. Explores the advanced features of core .Net
concepts in step-by-step detail

2. Understand great ways to enhance your
website by securing against cross-site scripting
attacks, enabling third party authentications,
and embedding maps

3. Covers interesting real world projects with
ASP.net, Silverlight, ADO.net, and Entity
Framework

Please check www.PacktPub.com for information on our titles

Microsoft .NET Framework 4.5
Quickstart Cookbook
ISBN: 978-1-84968-698-3 Paperback: 226 pages

Get up to date with the exciting new features in
.NET 4.5 Framework with these simple but incredibly
effective recipes

1. Designed for the fastest jump into .NET 4.5,
with a clearly designed roadmap of progressive
chapters and detailed examples

2.	 A	great	and	efficient	way	to	get	into	.NET	4.5	
and not only understand its features but clearly
know how to use them, when, how and why

3. Covers Windows 8 XAML development,
.NET	Core	(with	Async/Await	&	reflection	
improvements), EF Code First & Migrations,
ASP.NET, WF, and WPF

.NET 4.5 Parallel Extensions
Cookbook
ISBN: 978-1-84969-022-5 Paperback: 336 pages

80 recipes to create scalable, task-based parallel
programs using .NET 4.5

1. Create multithreaded applications using
.NET Framework 4.5

2. Get introduced to .NET 4.5 parallel extensions
and familiarized with .NET parallel loops

3. Use new data structures introduced by
.NET Framework 4.5 to simplify complex
synchronisation problems

4. Practical recipes on everything you will need to
create task-based parallel programs

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding Representational State Transfer Services
	Understanding REST
	Resources in REST-based architecture
	The REST architectural constraints
	Client-server
	Stateless
	Cacheable
	Code on demand
	Uniform interface
	Resource management

	SOAP, REST, and XML-RPC – a closer look
	Understanding the Windows Communication Foundation
	REST attributes
	WebServiceHost
	WebHttpBinding
	WebHttpBehavior
	WebOperationContext
	WebMessageFormat
	WebGet attribute
	WebInvoke attribute
	UriTemplate

	REST-based Web Services
	Learning RESTful Web Services

	Implementing RESTful services
in .NET 4.5
	The UserNamePasswordValidator class
	Simplified configuration
	Standard endpoints
	Discovery
	Simplified IIS hosting
	Improvements in REST
	Implementing a RESTful Service using
WCF 4.5
	Creating a WCF service
	Making the service RESTful

	Specifying the binding information
	Hosting the RESTful WCF service
	Hosting the service inside the console application

	Returning JSON data
	Consuming the RESTful Service

	Summary

	Chapter 2: Understanding Resource Oriented Architectures
	Understanding SOA
	Service
	Service provider
	Service consumer
	Service registry
	Service contract
	Service proxy
	Service lease
	Message
	Service description
	Advertising and discovery
	From Object Orientation to SOA to ROA
to REST

	A look at ROA
	Basic properties of ROAs
	Basic concepts of ROAs

	Fundamental HTTP concepts

	Resource Oriented and Service Oriented Architecture
	Resource
	Uniform resource identifier
	Addressability
	Statelessness
	Representations

	Comparison of the three architectural styles
	Summary

	Chapter 3: Working with
RESTful Services
	Exploring Windows Communication Foundation (WCF)
	Applying service behavior
	New features in WCF 4.5
	Enhancements in WCF Framework
	Simplified configuration
	Standard endpoints
	Discovery
	Simplified IIS hosting
	REST improvements
	Routing service
	Automatic Help page
	Bindings in WCF
	Choosing the correct binding
	Security in WCF – securing your WCF services

	Implementing RESTful services using WCF
	Creating the security database
	Creating SecurityService

	Making the service RESTful
	Hosting SecurityService

	Summary

	Chapter 4: Consuming RESTful Services
	Understanding AJAX
	Introducing JSON and jQuery
	Understanding Language Integrated Query (LINQ)
	Data source controls
	ObjectDataSource control
	SqlDataSource control
	SiteMapDataSource control
	XMLDataSource control
	LinqDataSource control

	LINQ to XML
	LINQ to SQL
	LINQ to Objects
	LINQ to Entities
	Working with service operations in LINQ

	Security Service
	Consuming Security Service
	ASP.NET
	Consuming Security Service using ASP.NET 4.5

	The ASP.NET MVC Framework
	Consuming Security Service using ASP.NET MVC
	Asynchronous operations

	Understanding Windows Presentation Foundation
	Consuming Security Service using WPF

	References
	Summary

	Chapter 5: Working with ASP.NET 4.5
	Working with the OData Protocol
	Working with ASP.NET Web API and OData

	New features in .NET Framework 4.x
	Supporting asynchronous programming
in .NET Framework 4.x

	Introducing the new features in
ASP.NET 4.5
	Enhanced state management features
	Performance monitoring
	Extensible Output Caching
	Search Engine Optimization (SEO)
	Other notable enhancements

	Working with ASP.NET Web API
	The ASP.NET Web API architecture
	Routing in ASP.NET Web API
	Implementing ASP.NET Web API for the Security database

	Summary

	Chapter 6: Working with RESTful
Data using Silverlight
	Introducing Silverlight 5
	New features in Silverlight 5

	WCF 4.5 RIA Services
	Implementing a sample application
	CRUD operations

	Summary

	Chapter 7: Advanced Features
	Best practices in using WCF
	WCF security issues
	Bindings

	WCF security
	Message-level security
	Transport-level security

	Best practices in using WCF services
	Best practices in using ASP.NET Web API
	References
	Summary

	Appendix: Library References
	Section A
	Popular REST-based service frameworks
	Ruby on Rails
	Restlet
	Django REST
	The Flickr REST API
	The Google API
	Yahoo! Social REST APIs

	Section B
	Working with Visual Studio 2013 IDE
	Installing Visual Studio 2013
	New features in Visual Studio 2013 IDE
	HTTP request and response codes
	Abbreviations
	The ASP.NET Web API library reference (based on .NET framework Version 4.5)

	References

	Index

